在多云地区重建 NDVI 时间序列:具有深度学习残差约束的融合拟合方法

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL ISPRS Journal of Photogrammetry and Remote Sensing Pub Date : 2024-09-16 DOI:10.1016/j.isprsjprs.2024.09.010
{"title":"在多云地区重建 NDVI 时间序列:具有深度学习残差约束的融合拟合方法","authors":"","doi":"10.1016/j.isprsjprs.2024.09.010","DOIUrl":null,"url":null,"abstract":"<div><p>The time series data of Normalized Difference Vegetation Index (NDVI) is crucial for monitoring changes in terrestrial vegetation. Existing reconstruction methods encounter challenges in areas prone to clouds, primarily due to inadequate utilization of spatial, temporal, periodic, and multi-sensor information, as well as a lack of physical interpretations. This frequently results in limited model performance or the omission of spatial details when predicting scenarios involving land cover changes. In this study, we propose a novel approach named Residual (Re) Constraints (Co) fusion-and-fit (ReCoff), consisting of two steps: ReCoF fusion (F) and Savitzky-Golay (SG) fit. This approach addresses the challenges of reconstructing 30 m Landsat NDVI time series data in cloudy regions. The fusion-fit process captures land cover changes and maps them from MODIS to Landsat using a deep learning model with residual constraints, while simultaneously integrating multi-dimensional, multi-sensor, and long time-series information. ReCoff offers three distinct advantages. First, the fusion results are more robust to land cover change scenarios and contain richer spatial details (RMSE of 0.091 vs. 0.101, 0.164, and 0.188 for ReCoF vs. STFGAN, FSDAF, and ESTARFM). Second, ReCoff improves the effectiveness of reconstructing dense time-series data (2016–2020, 16-day interval) in cloudy areas, whereas other methods are more susceptible to the impact of prolonged data gaps. ReCoff achieves a correlation coefficient of 0.84 with the MODIS reference series, outperforming SG (0.28), HANTS (0.32), and GF-SG (0.48). Third, with the help of the GEE platform, ReCoff can be applied over large areas (771 km × 634 km) and long-time scales (bimonthly intervals from 2000 to 2020) in cloudy regions. ReCoff demonstrates potential for accurately reconstructing time-series data in cloudy areas.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing NDVI time series in cloud-prone regions: A fusion-and-fit approach with deep learning residual constraint\",\"authors\":\"\",\"doi\":\"10.1016/j.isprsjprs.2024.09.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The time series data of Normalized Difference Vegetation Index (NDVI) is crucial for monitoring changes in terrestrial vegetation. Existing reconstruction methods encounter challenges in areas prone to clouds, primarily due to inadequate utilization of spatial, temporal, periodic, and multi-sensor information, as well as a lack of physical interpretations. This frequently results in limited model performance or the omission of spatial details when predicting scenarios involving land cover changes. In this study, we propose a novel approach named Residual (Re) Constraints (Co) fusion-and-fit (ReCoff), consisting of two steps: ReCoF fusion (F) and Savitzky-Golay (SG) fit. This approach addresses the challenges of reconstructing 30 m Landsat NDVI time series data in cloudy regions. The fusion-fit process captures land cover changes and maps them from MODIS to Landsat using a deep learning model with residual constraints, while simultaneously integrating multi-dimensional, multi-sensor, and long time-series information. ReCoff offers three distinct advantages. First, the fusion results are more robust to land cover change scenarios and contain richer spatial details (RMSE of 0.091 vs. 0.101, 0.164, and 0.188 for ReCoF vs. STFGAN, FSDAF, and ESTARFM). Second, ReCoff improves the effectiveness of reconstructing dense time-series data (2016–2020, 16-day interval) in cloudy areas, whereas other methods are more susceptible to the impact of prolonged data gaps. ReCoff achieves a correlation coefficient of 0.84 with the MODIS reference series, outperforming SG (0.28), HANTS (0.32), and GF-SG (0.48). Third, with the help of the GEE platform, ReCoff can be applied over large areas (771 km × 634 km) and long-time scales (bimonthly intervals from 2000 to 2020) in cloudy regions. ReCoff demonstrates potential for accurately reconstructing time-series data in cloudy areas.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624003484\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003484","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

归一化植被指数(NDVI)的时间序列数据对于监测陆地植被的变化至关重要。现有的重建方法在多云地区遇到了挑战,主要原因是没有充分利用空间、时间、周期和多传感器信息,以及缺乏物理解释。这经常导致在预测涉及土地覆被变化的场景时,模型性能有限或遗漏空间细节。在本研究中,我们提出了一种名为 "残差(Re)约束(Co)融合与拟合(ReCoff)"的新方法,由两个步骤组成:ReCoF 融合(F)和萨维茨基-戈莱(SG)拟合。这种方法解决了在多云地区重建 30 米大地遥感卫星 NDVI 时间序列数据的难题。融合拟合过程利用具有残差约束的深度学习模型捕捉土地覆被变化,并将其从 MODIS 映射到 Landsat,同时整合多维度、多传感器和长时间序列信息。ReCoff 具有三个显著优势。首先,融合结果对土地覆被变化情景更加稳健,并包含更丰富的空间细节(ReCoF 与 STFGAN、FSDAF 和 ESTARFM 相比,RMSE 分别为 0.091、0.101、0.164 和 0.188)。其次,ReCoff 提高了在多云地区重建密集时间序列数据(2016-2020 年,16 天间隔)的有效性,而其他方法更容易受到长时间数据间隙的影响。ReCoff 与 MODIS 参考序列的相关系数达到 0.84,优于 SG(0.28)、HANTS(0.32)和 GF-SG(0.48)。第三,在 GEE 平台的帮助下,ReCoff 可以应用于大面积(771 km × 634 km)和长时间尺度(2000 年至 2020 年的双月时间间隔)的多云地区。ReCoff 展示了在多云地区准确重建时间序列数据的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing NDVI time series in cloud-prone regions: A fusion-and-fit approach with deep learning residual constraint

The time series data of Normalized Difference Vegetation Index (NDVI) is crucial for monitoring changes in terrestrial vegetation. Existing reconstruction methods encounter challenges in areas prone to clouds, primarily due to inadequate utilization of spatial, temporal, periodic, and multi-sensor information, as well as a lack of physical interpretations. This frequently results in limited model performance or the omission of spatial details when predicting scenarios involving land cover changes. In this study, we propose a novel approach named Residual (Re) Constraints (Co) fusion-and-fit (ReCoff), consisting of two steps: ReCoF fusion (F) and Savitzky-Golay (SG) fit. This approach addresses the challenges of reconstructing 30 m Landsat NDVI time series data in cloudy regions. The fusion-fit process captures land cover changes and maps them from MODIS to Landsat using a deep learning model with residual constraints, while simultaneously integrating multi-dimensional, multi-sensor, and long time-series information. ReCoff offers three distinct advantages. First, the fusion results are more robust to land cover change scenarios and contain richer spatial details (RMSE of 0.091 vs. 0.101, 0.164, and 0.188 for ReCoF vs. STFGAN, FSDAF, and ESTARFM). Second, ReCoff improves the effectiveness of reconstructing dense time-series data (2016–2020, 16-day interval) in cloudy areas, whereas other methods are more susceptible to the impact of prolonged data gaps. ReCoff achieves a correlation coefficient of 0.84 with the MODIS reference series, outperforming SG (0.28), HANTS (0.32), and GF-SG (0.48). Third, with the help of the GEE platform, ReCoff can be applied over large areas (771 km × 634 km) and long-time scales (bimonthly intervals from 2000 to 2020) in cloudy regions. ReCoff demonstrates potential for accurately reconstructing time-series data in cloudy areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
期刊最新文献
Reconstructing NDVI time series in cloud-prone regions: A fusion-and-fit approach with deep learning residual constraint MuSRFM: Multiple scale resolution fusion based precise and robust satellite derived bathymetry model for island nearshore shallow water regions using sentinel-2 multi-spectral imagery Snow depth retrieval method for PolSAR data using multi-parameters snow backscattering model Sequential polarimetric phase optimization algorithm for dynamic deformation monitoring of landslides A general albedo recovery approach for aerial photogrammetric images through inverse rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1