基底曲率对共价有机框架电荷分布的调节促进了电容性去离子作用

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-16 DOI:10.1002/adfm.202407479
Dong Jiang, Ruibo Xu, Liang Bai, Jonathan P. Hill, Joel Henzie, Liyang Zhu, Wei Xia, Ran Bu, Yingji Zhao, Yunqing Kang, Takashi Hamada, Renzhi Ma, Nagy Torad, Jie Wang, Toru Asahi, Xingtao Xu, Yusuke Yamauchi
{"title":"基底曲率对共价有机框架电荷分布的调节促进了电容性去离子作用","authors":"Dong Jiang, Ruibo Xu, Liang Bai, Jonathan P. Hill, Joel Henzie, Liyang Zhu, Wei Xia, Ran Bu, Yingji Zhao, Yunqing Kang, Takashi Hamada, Renzhi Ma, Nagy Torad, Jie Wang, Toru Asahi, Xingtao Xu, Yusuke Yamauchi","doi":"10.1002/adfm.202407479","DOIUrl":null,"url":null,"abstract":"Covalent organic frameworks (COFs) are promising high-performance capacitive deionization (CDI) materials. Strategies to optimize CDI performance of COFs focus largely on hybridization with conductive substrates, to improve their their intrinsically poor conductivity. A new structure-function relationship between COFs and their substrates is proposed here based on substrate-induced surface curvature. Graphene (zero-curvature) and carbon nanotubes (CNT, curved) are selected as COF growthsubstrates to assess the effect of curvature engineering effect on CDI performance of TpPa-SO<sub>3</sub>H-COF. Ultrahigh ion (Na<sup>+</sup>) adsorption capacity (58.74 mg g<sup>−1</sup>) is achieved by CNT-COF hybrid (<i>cf</i>. compared to graphene-COF hybrid 34.20 mg g<sup>−1</sup>), demonstrating the significance of curvature engineering. Notably, the corresponding salt (NaCl) adsorption capacity of CNT-COF hybrid reaches 149.25 mg g<sup>−1</sup> in 1000 ppm at 1.2 V, representing state-of-the-art CDI performance, and the highest value among organic CDI electrodes. X-ray photoelectron spectroscopy and theoretical calculations subsequently reveal that substrate curvature can induce local strain, which regulates charge distribution within the COF skeleton, causing a lower binding energy state for Na<sup>+</sup> adsorption. Electrochemical quartz crystal microbalance measurements revealed faster Na<sup>+</sup> adsorption kinetics of CNT-COF due to regulated charge distribution within COF skeleton induced by substrate curvature. This work gives new insight into design of COF materials based on curvature engineering.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Substrate Curvature-Induced Regulation of Charge Distribution of Covalent Organic Frameworks Promotes Capacitive Deionization\",\"authors\":\"Dong Jiang, Ruibo Xu, Liang Bai, Jonathan P. Hill, Joel Henzie, Liyang Zhu, Wei Xia, Ran Bu, Yingji Zhao, Yunqing Kang, Takashi Hamada, Renzhi Ma, Nagy Torad, Jie Wang, Toru Asahi, Xingtao Xu, Yusuke Yamauchi\",\"doi\":\"10.1002/adfm.202407479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covalent organic frameworks (COFs) are promising high-performance capacitive deionization (CDI) materials. Strategies to optimize CDI performance of COFs focus largely on hybridization with conductive substrates, to improve their their intrinsically poor conductivity. A new structure-function relationship between COFs and their substrates is proposed here based on substrate-induced surface curvature. Graphene (zero-curvature) and carbon nanotubes (CNT, curved) are selected as COF growthsubstrates to assess the effect of curvature engineering effect on CDI performance of TpPa-SO<sub>3</sub>H-COF. Ultrahigh ion (Na<sup>+</sup>) adsorption capacity (58.74 mg g<sup>−1</sup>) is achieved by CNT-COF hybrid (<i>cf</i>. compared to graphene-COF hybrid 34.20 mg g<sup>−1</sup>), demonstrating the significance of curvature engineering. Notably, the corresponding salt (NaCl) adsorption capacity of CNT-COF hybrid reaches 149.25 mg g<sup>−1</sup> in 1000 ppm at 1.2 V, representing state-of-the-art CDI performance, and the highest value among organic CDI electrodes. X-ray photoelectron spectroscopy and theoretical calculations subsequently reveal that substrate curvature can induce local strain, which regulates charge distribution within the COF skeleton, causing a lower binding energy state for Na<sup>+</sup> adsorption. Electrochemical quartz crystal microbalance measurements revealed faster Na<sup>+</sup> adsorption kinetics of CNT-COF due to regulated charge distribution within COF skeleton induced by substrate curvature. This work gives new insight into design of COF materials based on curvature engineering.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202407479\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202407479","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)是一种前景广阔的高性能电容式去离子(CDI)材料。优化 COF 的 CDI 性能的策略主要集中在与导电基质杂化,以改善其本身较差的导电性。本文基于基底诱导的表面曲率,提出了 COF 及其基底之间新的结构-功能关系。选择石墨烯(零曲率)和碳纳米管(CNT,弯曲)作为 COF 生长基底,以评估曲率工程效应对 TpPa-SO3H-COF CDI 性能的影响。CNT-COF 混合物实现了超高的离子(Na+)吸附容量(58.74 mg g-1)(与石墨烯-COF 混合物 34.20 mg g-1 相比),证明了曲率工程的重要性。值得注意的是,CNT-COF 杂化物在 1.2 V 条件下 1000 ppm 的相应盐(NaCl)吸附容量达到 149.25 mg g-1,代表了最先进的 CDI 性能,也是有机 CDI 电极中的最高值。随后进行的 X 射线光电子能谱分析和理论计算显示,基底曲率可引起局部应变,从而调节 COF 骨架内的电荷分布,使 Na+ 吸附处于较低的结合能状态。电化学石英晶体微天平测量显示,由于基底曲率可调节 COF 骨架内的电荷分布,CNT-COF 的 Na+ 吸附动力学速度更快。这项研究为基于曲率工程的 COF 材料设计提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Substrate Curvature-Induced Regulation of Charge Distribution of Covalent Organic Frameworks Promotes Capacitive Deionization
Covalent organic frameworks (COFs) are promising high-performance capacitive deionization (CDI) materials. Strategies to optimize CDI performance of COFs focus largely on hybridization with conductive substrates, to improve their their intrinsically poor conductivity. A new structure-function relationship between COFs and their substrates is proposed here based on substrate-induced surface curvature. Graphene (zero-curvature) and carbon nanotubes (CNT, curved) are selected as COF growthsubstrates to assess the effect of curvature engineering effect on CDI performance of TpPa-SO3H-COF. Ultrahigh ion (Na+) adsorption capacity (58.74 mg g−1) is achieved by CNT-COF hybrid (cf. compared to graphene-COF hybrid 34.20 mg g−1), demonstrating the significance of curvature engineering. Notably, the corresponding salt (NaCl) adsorption capacity of CNT-COF hybrid reaches 149.25 mg g−1 in 1000 ppm at 1.2 V, representing state-of-the-art CDI performance, and the highest value among organic CDI electrodes. X-ray photoelectron spectroscopy and theoretical calculations subsequently reveal that substrate curvature can induce local strain, which regulates charge distribution within the COF skeleton, causing a lower binding energy state for Na+ adsorption. Electrochemical quartz crystal microbalance measurements revealed faster Na+ adsorption kinetics of CNT-COF due to regulated charge distribution within COF skeleton induced by substrate curvature. This work gives new insight into design of COF materials based on curvature engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1