来自 20 多年 GRACE 和 GRACE-FO 全球重力场模型的残余和未建模海洋潮汐信号

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysical Research: Solid Earth Pub Date : 2024-09-16 DOI:10.1029/2024JB029345
Igor Koch, Mathias Duwe, Jakob Flury
{"title":"来自 20 多年 GRACE 和 GRACE-FO 全球重力场模型的残余和未建模海洋潮汐信号","authors":"Igor Koch,&nbsp;Mathias Duwe,&nbsp;Jakob Flury","doi":"10.1029/2024JB029345","DOIUrl":null,"url":null,"abstract":"<p>We analyze remaining ocean tide signal in K/Ka-band range-rate (RR) postfit residuals, obtained after estimation of monthly gravity field solutions from 21.5 years of Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On sensor data. Low-pass filtered and numerically differentiated residuals are assigned to <span></span><math>\n <semantics>\n <mrow>\n <mn>5</mn>\n <mo>°</mo>\n <mo>×</mo>\n <mn>5</mn>\n <mo>°</mo>\n </mrow>\n <annotation> $\\mathrm{5}{}^{\\circ}\\times \\mathrm{5}{}^{\\circ}$</annotation>\n </semantics></math> grids and a spectral analysis is performed using Lomb-Scargle periodograms. We identified enhanced amplitudes at over 30 ocean tide periods. Spectral replicas revealed several tides from sub-semidiurnal bands. Increased ocean tide amplitudes are located in expected regions, that is, in high-latitude, coastal and shallow water regions, although some tides also show distinct patterns over the open ocean. While most identified tides are considered during processing, and therefore the amplitudes represent residual signal w.r.t. the ocean tide model, several unmodeled tides were found, including astronomical degree-3 tides <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mmultiscripts>\n <mi>M</mi>\n <mprescripts></mprescripts>\n <none></none>\n <mrow>\n <mn>3</mn>\n </mrow>\n </mmultiscripts>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation> ${{}^{3}\\mathrm{M}}_{1}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mmultiscripts>\n <mi>N</mi>\n <mprescripts></mprescripts>\n <none></none>\n <mrow>\n <mn>3</mn>\n </mrow>\n </mmultiscripts>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${{}^{3}\\mathrm{N}}_{2}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mmultiscripts>\n <mi>L</mi>\n <mprescripts></mprescripts>\n <none></none>\n <mrow>\n <mn>3</mn>\n </mrow>\n </mmultiscripts>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${{}^{3}\\mathrm{L}}_{2}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mmultiscripts>\n <mi>M</mi>\n <mprescripts></mprescripts>\n <none></none>\n <mrow>\n <mn>3</mn>\n </mrow>\n </mmultiscripts>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${{}^{3}\\mathrm{M}}_{3}$</annotation>\n </semantics></math>, and radiational and/or compound tides <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{S}}_{3}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{3}$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>/</mo>\n <mi>S</mi>\n <mi>K</mi>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${/\\mathrm{S}\\mathrm{K}}_{3}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>T</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{T}}_{3}$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>/</mo>\n <mi>S</mi>\n <mi>P</mi>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${/\\mathrm{S}\\mathrm{P}}_{3}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mn>2</mn>\n <mi>S</mi>\n <mi>M</mi>\n </mrow>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{2}\\mathrm{S}\\mathrm{M}}_{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mn>2</mn>\n <mi>M</mi>\n <mi>K</mi>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{2}\\mathrm{M}\\mathrm{K}}_{3}$</annotation>\n </semantics></math><span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mo>/</mo>\n <mi>M</mi>\n <mi>O</mi>\n </mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${/\\mathrm{M}\\mathrm{O}}_{3}$</annotation>\n </semantics></math>. The astronomical degree-3 tides were observed on a global level for the first time a few years ago in altimeter data. We are unaware of any global data-constrained solutions for the other tides. The amplitude patterns of these tides exhibit similarities to purely hydrodynamic solutions, and altimeter observations (astronomical degree-3 only). The sensitivity of the satellites to these rather small tidal effects demands their inclusion into the gravity field recovery processing to reduce orbit modeling errors and a possible aliasing. The conducted study shows enormous potential of RR postfit residuals analysis for validating ocean tide models and improving gravity field recovery processing strategies.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029345","citationCount":"0","resultStr":"{\"title\":\"Residual and Unmodeled Ocean Tide Signal From 20+ Years of GRACE and GRACE-FO Global Gravity Field Models\",\"authors\":\"Igor Koch,&nbsp;Mathias Duwe,&nbsp;Jakob Flury\",\"doi\":\"10.1029/2024JB029345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze remaining ocean tide signal in K/Ka-band range-rate (RR) postfit residuals, obtained after estimation of monthly gravity field solutions from 21.5 years of Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On sensor data. Low-pass filtered and numerically differentiated residuals are assigned to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>5</mn>\\n <mo>°</mo>\\n <mo>×</mo>\\n <mn>5</mn>\\n <mo>°</mo>\\n </mrow>\\n <annotation> $\\\\mathrm{5}{}^{\\\\circ}\\\\times \\\\mathrm{5}{}^{\\\\circ}$</annotation>\\n </semantics></math> grids and a spectral analysis is performed using Lomb-Scargle periodograms. We identified enhanced amplitudes at over 30 ocean tide periods. Spectral replicas revealed several tides from sub-semidiurnal bands. Increased ocean tide amplitudes are located in expected regions, that is, in high-latitude, coastal and shallow water regions, although some tides also show distinct patterns over the open ocean. While most identified tides are considered during processing, and therefore the amplitudes represent residual signal w.r.t. the ocean tide model, several unmodeled tides were found, including astronomical degree-3 tides <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mmultiscripts>\\n <mi>M</mi>\\n <mprescripts></mprescripts>\\n <none></none>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </mmultiscripts>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{}^{3}\\\\mathrm{M}}_{1}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mmultiscripts>\\n <mi>N</mi>\\n <mprescripts></mprescripts>\\n <none></none>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </mmultiscripts>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{}^{3}\\\\mathrm{N}}_{2}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mmultiscripts>\\n <mi>L</mi>\\n <mprescripts></mprescripts>\\n <none></none>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </mmultiscripts>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{}^{3}\\\\mathrm{L}}_{2}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mmultiscripts>\\n <mi>M</mi>\\n <mprescripts></mprescripts>\\n <none></none>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </mmultiscripts>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{}^{3}\\\\mathrm{M}}_{3}$</annotation>\\n </semantics></math>, and radiational and/or compound tides <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>S</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{S}}_{3}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{R}}_{3}$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>/</mo>\\n <mi>S</mi>\\n <mi>K</mi>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${/\\\\mathrm{S}\\\\mathrm{K}}_{3}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>T</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{T}}_{3}$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>/</mo>\\n <mi>S</mi>\\n <mi>P</mi>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${/\\\\mathrm{S}\\\\mathrm{P}}_{3}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mn>2</mn>\\n <mi>S</mi>\\n <mi>M</mi>\\n </mrow>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{2}\\\\mathrm{S}\\\\mathrm{M}}_{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mn>2</mn>\\n <mi>M</mi>\\n <mi>K</mi>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{2}\\\\mathrm{M}\\\\mathrm{K}}_{3}$</annotation>\\n </semantics></math><span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mo>/</mo>\\n <mi>M</mi>\\n <mi>O</mi>\\n </mrow>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${/\\\\mathrm{M}\\\\mathrm{O}}_{3}$</annotation>\\n </semantics></math>. The astronomical degree-3 tides were observed on a global level for the first time a few years ago in altimeter data. We are unaware of any global data-constrained solutions for the other tides. The amplitude patterns of these tides exhibit similarities to purely hydrodynamic solutions, and altimeter observations (astronomical degree-3 only). The sensitivity of the satellites to these rather small tidal effects demands their inclusion into the gravity field recovery processing to reduce orbit modeling errors and a possible aliasing. The conducted study shows enormous potential of RR postfit residuals analysis for validating ocean tide models and improving gravity field recovery processing strategies.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029345\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029345\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029345","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分析了 K/Ka 波段测距率(RR)后拟合残差中的剩余海洋潮汐信号,这些残差是在对 21.5 年重力恢复与气候实验(GRACE)和 GRACE Follow-On 传感器数据的月重力场解进行估计之后获得的。经过低通滤波和数值微分的残差被分配到 5 ° × 5 ° $\mathrm{5}{}^{\circ}\times \mathrm{5}{}^{\circ}$ 网格中,并使用 Lomb-Scargle 周期图进行光谱分析。我们确定了 30 多个海洋潮汐周期的增强振幅。频谱复制品显示了来自亚半日带的几个潮汐。增大的海潮振幅位于预期的区域,即高纬度、沿海和浅水区域,尽管有些潮汐在开阔的海洋上也显示出明显的模式。While most identified tides are considered during processing, and therefore the amplitudes represent residual signal w.r.t. the ocean tide model, several unmodeled tides were found, including astronomical degree-3 tides M 3 1 ${{}^{3}\mathrm{M}}_{1}$ , N 3 2 ${{}^{3}\mathrm{N}}_{2}$ , L 3 2 ${{}^{3}\mathrm{L}}_{2}$ , M 3 3 ${{}^{3}\mathrm{M}}_{3}$ , and radiational and/or compound tides S 3 ${\mathrm{S}}_{3}$ , R 3 ${\mathrm{R}}_{3}$ / S K 3 ${/\mathrm{S}\mathrm{K}}_{3}$ , T 3 ${\mathrm{T}}_{3}$ / S P 3 ${/\mathrm{S}\mathrm{P}}_{3}$ , 2 S M 2 ${\mathrm{2}\mathrm{S}\mathrm{M}}_{2}$ and 2 M K 3 ${\mathrm{2}\mathrm{M}\mathrm{K}}_{3}$ / M O 3 ${/\mathrm{M}\mathrm{O}}_{3}$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Residual and Unmodeled Ocean Tide Signal From 20+ Years of GRACE and GRACE-FO Global Gravity Field Models

We analyze remaining ocean tide signal in K/Ka-band range-rate (RR) postfit residuals, obtained after estimation of monthly gravity field solutions from 21.5 years of Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On sensor data. Low-pass filtered and numerically differentiated residuals are assigned to 5 ° × 5 ° $\mathrm{5}{}^{\circ}\times \mathrm{5}{}^{\circ}$ grids and a spectral analysis is performed using Lomb-Scargle periodograms. We identified enhanced amplitudes at over 30 ocean tide periods. Spectral replicas revealed several tides from sub-semidiurnal bands. Increased ocean tide amplitudes are located in expected regions, that is, in high-latitude, coastal and shallow water regions, although some tides also show distinct patterns over the open ocean. While most identified tides are considered during processing, and therefore the amplitudes represent residual signal w.r.t. the ocean tide model, several unmodeled tides were found, including astronomical degree-3 tides M 3 1 ${{}^{3}\mathrm{M}}_{1}$ , N 3 2 ${{}^{3}\mathrm{N}}_{2}$ , L 3 2 ${{}^{3}\mathrm{L}}_{2}$ , M 3 3 ${{}^{3}\mathrm{M}}_{3}$ , and radiational and/or compound tides S 3 ${\mathrm{S}}_{3}$ , R 3 ${\mathrm{R}}_{3}$ / S K 3 ${/\mathrm{S}\mathrm{K}}_{3}$ , T 3 ${\mathrm{T}}_{3}$ / S P 3 ${/\mathrm{S}\mathrm{P}}_{3}$ , 2 S M 2 ${\mathrm{2}\mathrm{S}\mathrm{M}}_{2}$ and 2 M K 3 ${\mathrm{2}\mathrm{M}\mathrm{K}}_{3}$ / M O 3 ${/\mathrm{M}\mathrm{O}}_{3}$ . The astronomical degree-3 tides were observed on a global level for the first time a few years ago in altimeter data. We are unaware of any global data-constrained solutions for the other tides. The amplitude patterns of these tides exhibit similarities to purely hydrodynamic solutions, and altimeter observations (astronomical degree-3 only). The sensitivity of the satellites to these rather small tidal effects demands their inclusion into the gravity field recovery processing to reduce orbit modeling errors and a possible aliasing. The conducted study shows enormous potential of RR postfit residuals analysis for validating ocean tide models and improving gravity field recovery processing strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
期刊最新文献
Study of the Micromechanical Properties and Dissolution Characteristics of Porous Coral Reef Limestone Characterizing Sub-Seafloor Seismic Structure of the Alaska Peninsula Along the Alaska-Aleutian Subduction Zone A Century of Deformation and Stress Change on Kīlauea's Décollement Redox Sensitive Mineral Magnetic Signatures of Seafloor Massive Sulfide Deposits The Role of Earth Tides in Reactivating Shallow Faults and Triggering Seafloor Methane Emissions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1