{"title":"贝尔氏麻痹的运动单位数量指数:用于早期评估的潜在电生理生物标志物","authors":"Mengjie Chen, Mingxia Zhu, Xiuli Li, Jingtao Pi, Xinhong Feng","doi":"10.1002/brb3.3632","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>Reliable, noninvasive early diagnostics of neuromuscular function in Bell's palsy, which causes facial paralysis and reduced quality of life, remain to be established. Here, we aimed to evaluate the utility of the motor unit number index (MUNIX) for the quantitative electrophysiological assessment of early-stage Bell's palsy, its correlation with clinical assessments, changes following treatment, and association with clinical prognosis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>MUNIX measures were recorded from the bilateral zygomaticus, orbicularis oculi, and orbicularis oris muscles of 10 healthy individuals and 64 patients with Bell's palsy. The patients were assessed by two specialist neurologists using the House–Brackmann and Sunnybrook Facial Grading Systems. Repeat assessments were performed on 20 patients with Bell's palsy who received treatment. Additionally, the 64 patients were reassessed using clinical scales after a 1-month interval.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The MUNIX values of the main affected muscles on the affected side were lower than those on the healthy side in patients with Bell's palsy (<i>p</i> < .05). The MUNIX measurements significantly correlated with the clinical facial nerve palsy scale scores (<i>p</i> < .05). Significant improvements were observed in the MUNIX values on repeat testing following treatment (<i>p</i> < .05). The baseline motor unit size index (the compound muscle action potential amplitude divided by MUNIX) was positively associated with improved clinical presentation after 1 month (<i>p</i> < .05).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>MUNIX can be used as an electrophysiological biomarker for the quantitative assessment of facial nerve palsy and treatment response, and as a prognostic biomarker, in patients with early Bell's palsy, and is recommended as a complement to conventional neurophysiological examinations.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.3632","citationCount":"0","resultStr":"{\"title\":\"Motor unit number index in Bell's palsy: A potential electrophysiological biomarker for early evaluation\",\"authors\":\"Mengjie Chen, Mingxia Zhu, Xiuli Li, Jingtao Pi, Xinhong Feng\",\"doi\":\"10.1002/brb3.3632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Introduction</h3>\\n \\n <p>Reliable, noninvasive early diagnostics of neuromuscular function in Bell's palsy, which causes facial paralysis and reduced quality of life, remain to be established. Here, we aimed to evaluate the utility of the motor unit number index (MUNIX) for the quantitative electrophysiological assessment of early-stage Bell's palsy, its correlation with clinical assessments, changes following treatment, and association with clinical prognosis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>MUNIX measures were recorded from the bilateral zygomaticus, orbicularis oculi, and orbicularis oris muscles of 10 healthy individuals and 64 patients with Bell's palsy. The patients were assessed by two specialist neurologists using the House–Brackmann and Sunnybrook Facial Grading Systems. Repeat assessments were performed on 20 patients with Bell's palsy who received treatment. Additionally, the 64 patients were reassessed using clinical scales after a 1-month interval.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The MUNIX values of the main affected muscles on the affected side were lower than those on the healthy side in patients with Bell's palsy (<i>p</i> < .05). The MUNIX measurements significantly correlated with the clinical facial nerve palsy scale scores (<i>p</i> < .05). Significant improvements were observed in the MUNIX values on repeat testing following treatment (<i>p</i> < .05). The baseline motor unit size index (the compound muscle action potential amplitude divided by MUNIX) was positively associated with improved clinical presentation after 1 month (<i>p</i> < .05).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>MUNIX can be used as an electrophysiological biomarker for the quantitative assessment of facial nerve palsy and treatment response, and as a prognostic biomarker, in patients with early Bell's palsy, and is recommended as a complement to conventional neurophysiological examinations.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.3632\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.3632\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.3632","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Motor unit number index in Bell's palsy: A potential electrophysiological biomarker for early evaluation
Introduction
Reliable, noninvasive early diagnostics of neuromuscular function in Bell's palsy, which causes facial paralysis and reduced quality of life, remain to be established. Here, we aimed to evaluate the utility of the motor unit number index (MUNIX) for the quantitative electrophysiological assessment of early-stage Bell's palsy, its correlation with clinical assessments, changes following treatment, and association with clinical prognosis.
Methods
MUNIX measures were recorded from the bilateral zygomaticus, orbicularis oculi, and orbicularis oris muscles of 10 healthy individuals and 64 patients with Bell's palsy. The patients were assessed by two specialist neurologists using the House–Brackmann and Sunnybrook Facial Grading Systems. Repeat assessments were performed on 20 patients with Bell's palsy who received treatment. Additionally, the 64 patients were reassessed using clinical scales after a 1-month interval.
Results
The MUNIX values of the main affected muscles on the affected side were lower than those on the healthy side in patients with Bell's palsy (p < .05). The MUNIX measurements significantly correlated with the clinical facial nerve palsy scale scores (p < .05). Significant improvements were observed in the MUNIX values on repeat testing following treatment (p < .05). The baseline motor unit size index (the compound muscle action potential amplitude divided by MUNIX) was positively associated with improved clinical presentation after 1 month (p < .05).
Conclusion
MUNIX can be used as an electrophysiological biomarker for the quantitative assessment of facial nerve palsy and treatment response, and as a prognostic biomarker, in patients with early Bell's palsy, and is recommended as a complement to conventional neurophysiological examinations.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)