人类 N-乙酰葡糖胺基转移酶 V 的生物正交精密工具

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-09-17 DOI:10.1021/jacs.4c05955
Yu Liu, Ganka Bineva-Todd, Richard W. Meek, Laura Mazo, Beatriz Piniello, Olga Moroz, Sean A. Burnap, Nadima Begum, André Ohara, Chloe Roustan, Sara Tomita, Svend Kjaer, Karen Polizzi, Weston B. Struwe, Carme Rovira, Gideon J. Davies, Benjamin Schumann
{"title":"人类 N-乙酰葡糖胺基转移酶 V 的生物正交精密工具","authors":"Yu Liu, Ganka Bineva-Todd, Richard W. Meek, Laura Mazo, Beatriz Piniello, Olga Moroz, Sean A. Burnap, Nadima Begum, André Ohara, Chloe Roustan, Sara Tomita, Svend Kjaer, Karen Polizzi, Weston B. Struwe, Carme Rovira, Gideon J. Davies, Benjamin Schumann","doi":"10.1021/jacs.4c05955","DOIUrl":null,"url":null,"abstract":"Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar <i>N</i>-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme–substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V\",\"authors\":\"Yu Liu, Ganka Bineva-Todd, Richard W. Meek, Laura Mazo, Beatriz Piniello, Olga Moroz, Sean A. Burnap, Nadima Begum, André Ohara, Chloe Roustan, Sara Tomita, Svend Kjaer, Karen Polizzi, Weston B. Struwe, Carme Rovira, Gideon J. Davies, Benjamin Schumann\",\"doi\":\"10.1021/jacs.4c05955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar <i>N</i>-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme–substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c05955\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c05955","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人类细胞分泌途径中 N-连接聚糖的正确合成在生理学中至关重要。早期的 N-聚糖生物合成遵循流水线原则,然后再经历关键的加工点,这些加工点的特点是依次加入糖 N-乙酰葡糖胺(GlcNAc)。GlcNAc转移酶V(MGAT5)的活性为N-聚糖天线的生物合成奠定了基础,而N-聚糖天线在癌症中严重上调。然而,MGAT5 的功能相关性和底物选择还不明确。在这里,我们利用蛋白质工程学来开发一种生物正交底物类似物,以提高 MGAT5 的活性。我们利用化学酶法合成技术生产了一系列带有笨重、生物正交酰酰胺侧链的核苷酸-糖类似物。我们发现 WT-MGAT5 对此类底物类似物具有相当高的活性。蛋白质工程产生了一种 MGAT5 变体,它失去了对原生核苷酸糖的活性,而增加了对含有 4-叠氮丁酰胺的底物类似物的活性。通过这种对底物特异性的限制,我们证明了正交酶-底物对适用于生物正交标记糖蛋白。通过 X 射线晶体学和分子动力学模拟,我们建立了 MGAT5 工程的结构基础,为生物正交精密化学工具的设计规则提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bioorthogonal Precision Tool for Human N-Acetylglucosaminyltransferase V
Correct elaboration of N-linked glycans in the secretory pathway of human cells is essential in physiology. Early N-glycan biosynthesis follows an assembly line principle before undergoing crucial elaboration points that feature the sequential incorporation of the sugar N-acetylglucosamine (GlcNAc). The activity of GlcNAc transferase V (MGAT5) primes the biosynthesis of an N-glycan antenna that is heavily upregulated in cancer. Still, the functional relevance and substrate choice of MGAT5 are ill-defined. Here, we employ protein engineering to develop a bioorthogonal substrate analog for the activity of MGAT5. Chemoenzymatic synthesis is used to produce a collection of nucleotide-sugar analogs with bulky, bioorthogonal acylamide side chains. We find that WT-MGAT5 displays considerable activity toward such substrate analogues. Protein engineering yields an MGAT5 variant that loses activity against the native nucleotide sugar and increases activity toward a 4-azidobutyramide-containing substrate analogue. By such restriction of substrate specificity, we show that the orthogonal enzyme–substrate pair is suitable to bioorthogonally tag glycoproteins. Through X-ray crystallography and molecular dynamics simulations, we establish the structural basis of MGAT5 engineering, informing the design rules for bioorthogonal precision chemical tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Synthesis of Mesoporous Catechin Nanoparticles as Biocompatible Drug-Free Antibacterial Mesoformulation Heavy-Atom Tunneling in Ring-Closure Reactions of Beryllium Ozonide Complexes Structural Isomerism in Bimetallic Ag20Cu12 Nanoclusters Cavity Manipulation of Attosecond Charge Migration in Conjugated Dendrimers Rechargeable Mg–Br2 Battery with Ultrafast Bromine Chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1