可迁移的液-液相分离和老化导致微型骤冷剂溶液具有很强的加工路径依赖性

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-17 DOI:10.1002/adfm.202410421
Dmitrii Fedorov, Fred-Eric Sammalisto, Adam L. Harmat, Martin Ahlberg, Salla Koskela, Mikko P. Haataja, Alberto Scacchi, Maria Sammalkorpi, Markus B. Linder
{"title":"可迁移的液-液相分离和老化导致微型骤冷剂溶液具有很强的加工路径依赖性","authors":"Dmitrii Fedorov, Fred-Eric Sammalisto, Adam L. Harmat, Martin Ahlberg, Salla Koskela, Mikko P. Haataja, Alberto Scacchi, Maria Sammalkorpi, Markus B. Linder","doi":"10.1002/adfm.202410421","DOIUrl":null,"url":null,"abstract":"Recombinant silk proteins provide a route toward sustainable and biocompatible materials. For making such materials, the assembly process from dilute protein into a functional material is central. The assembly mechanism in engineered materials is by necessity different from the natural ones—this poses challenges but also opens opportunities for scaling up and for developing novel properties. The phase behavior of a mini-spidroin, NT-2Rep-CT is studied, which is a widely studied variant of recombinant silk. NT-2Rep-CT can be triggered to assemble by lowering the pH, but even at high pH—considered as storage conditions—it can be in various states, such as forming condensates, clusters, gels, and soluble protein. It is shown how its assembly phases evolve through both metastable and dynamically arrested states. The observed behavior of silk protein solutions is highly complex, and elements thereof from phase diagrams associated with polymers, colloidal systems, and globular proteins are found. Based on the characterization of cluster formation and structural intermediates, a minimalist phase diagram is proposed for NT-2Rep-CT and argues that the understanding and insight into silk assembly via its phase behavior, and especially the arrested states, is central for designing recombinant silk proteins and their processing for materials applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metastable Liquid–Liquid Phase Separation and Aging Lead to Strong Processing Path Dependence in Mini-Spidroin Solutions\",\"authors\":\"Dmitrii Fedorov, Fred-Eric Sammalisto, Adam L. Harmat, Martin Ahlberg, Salla Koskela, Mikko P. Haataja, Alberto Scacchi, Maria Sammalkorpi, Markus B. Linder\",\"doi\":\"10.1002/adfm.202410421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recombinant silk proteins provide a route toward sustainable and biocompatible materials. For making such materials, the assembly process from dilute protein into a functional material is central. The assembly mechanism in engineered materials is by necessity different from the natural ones—this poses challenges but also opens opportunities for scaling up and for developing novel properties. The phase behavior of a mini-spidroin, NT-2Rep-CT is studied, which is a widely studied variant of recombinant silk. NT-2Rep-CT can be triggered to assemble by lowering the pH, but even at high pH—considered as storage conditions—it can be in various states, such as forming condensates, clusters, gels, and soluble protein. It is shown how its assembly phases evolve through both metastable and dynamically arrested states. The observed behavior of silk protein solutions is highly complex, and elements thereof from phase diagrams associated with polymers, colloidal systems, and globular proteins are found. Based on the characterization of cluster formation and structural intermediates, a minimalist phase diagram is proposed for NT-2Rep-CT and argues that the understanding and insight into silk assembly via its phase behavior, and especially the arrested states, is central for designing recombinant silk proteins and their processing for materials applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202410421\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202410421","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

重组蚕丝蛋白为可持续发展和生物相容性材料提供了一条途径。要制造这种材料,从稀释蛋白质到功能材料的组装过程至关重要。工程材料的组装机制必然不同于天然材料--这带来了挑战,但也为扩大规模和开发新特性带来了机遇。本文研究了一种微型蛛丝蛋白 NT-2Rep-CT 的相行为,这是一种被广泛研究的重组蚕丝变体。NT-2Rep-CT 可以通过降低 pH 值触发组装,但即使在高 pH 值条件下(被认为是储存条件),它也可以处于各种状态,如形成凝结物、团簇、凝胶和可溶性蛋白质。图中展示了其组装阶段是如何通过稳定态和动态停滞态演变的。观察到的蚕丝蛋白溶液行为非常复杂,其中的元素来自与聚合物、胶体系统和球状蛋白质相关的相图。根据簇形成和结构中间产物的特征,提出了 NT-2Rep-CT 的简约相图,并认为通过其相行为,尤其是停滞态,了解和洞察蚕丝的组装,对于设计重组蚕丝蛋白及其材料应用加工至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metastable Liquid–Liquid Phase Separation and Aging Lead to Strong Processing Path Dependence in Mini-Spidroin Solutions
Recombinant silk proteins provide a route toward sustainable and biocompatible materials. For making such materials, the assembly process from dilute protein into a functional material is central. The assembly mechanism in engineered materials is by necessity different from the natural ones—this poses challenges but also opens opportunities for scaling up and for developing novel properties. The phase behavior of a mini-spidroin, NT-2Rep-CT is studied, which is a widely studied variant of recombinant silk. NT-2Rep-CT can be triggered to assemble by lowering the pH, but even at high pH—considered as storage conditions—it can be in various states, such as forming condensates, clusters, gels, and soluble protein. It is shown how its assembly phases evolve through both metastable and dynamically arrested states. The observed behavior of silk protein solutions is highly complex, and elements thereof from phase diagrams associated with polymers, colloidal systems, and globular proteins are found. Based on the characterization of cluster formation and structural intermediates, a minimalist phase diagram is proposed for NT-2Rep-CT and argues that the understanding and insight into silk assembly via its phase behavior, and especially the arrested states, is central for designing recombinant silk proteins and their processing for materials applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1