利用生物技术整合多种策略,设计用于氢气和氧气进化的高性能电催化剂

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-17 DOI:10.1002/adfm.202413072
Lin Ge, Chang Liu, Tingting Xue, Yiyang Kang, Yining Sun, Yuxi Chen, Jiajie Wu, Kai Teng, Lei Li, Qing Qu
{"title":"利用生物技术整合多种策略,设计用于氢气和氧气进化的高性能电催化剂","authors":"Lin Ge, Chang Liu, Tingting Xue, Yiyang Kang, Yining Sun, Yuxi Chen, Jiajie Wu, Kai Teng, Lei Li, Qing Qu","doi":"10.1002/adfm.202413072","DOIUrl":null,"url":null,"abstract":"Combining multiple design strategies often enhances catalyst performance but usually comes with high costs and low reproducibility. A technique that enhances catalyst performance in multiple strategies is urgently needed. Herein, a novel bioregulation technique is introduced, allowing simultaneous control over morphology, particle size, doping, interface engineering, and electronic properties. Bioregulation technique utilizes the soluble extracellular polymer from <i>Aspergillus niger</i> as a templating agent to construct high-performance catalysts for hydrogen and oxygen evolution reaction (HER and OER). This technique controls catalyst morphology, introduces biological N and S doping, and regulates the electronic structure of the catalyst surface. Biomolecule modification enhances surface hydrophilicity, and the nanostructure increases surface roughness and gas-release efficiency. Theoretical calculations show that the bioregulation technique shortens the d/p-band center, optimizing reaction intermediate adsorption and desorption. The Bio-Pt/Co<sub>3</sub>O<sub>4</sub> catalyst with trace Pt on the surface, designed with these strategies, achieves HER (<i>η</i><sub>10</sub> of 42 mV), OER (<i>η</i><sub>10</sub> of 221 mV), and overall water-splitting performance (1.51 V at 10 mA cm<sup>−2</sup>), maintaining stability for over 50 h, outperforming most Pt-based catalysts. Notably, using spent lithium-ion battery cathodes leachate, rich in Co<sup>2</sup>⁺, successfully replicates the experiment. This approach holds promise as a mainstream method for synthesizing high-performance materials in the future.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Multiple Strategies Using Biotechnology to Design High-Performance Electrocatalysts for Hydrogen and Oxygen Evolution\",\"authors\":\"Lin Ge, Chang Liu, Tingting Xue, Yiyang Kang, Yining Sun, Yuxi Chen, Jiajie Wu, Kai Teng, Lei Li, Qing Qu\",\"doi\":\"10.1002/adfm.202413072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining multiple design strategies often enhances catalyst performance but usually comes with high costs and low reproducibility. A technique that enhances catalyst performance in multiple strategies is urgently needed. Herein, a novel bioregulation technique is introduced, allowing simultaneous control over morphology, particle size, doping, interface engineering, and electronic properties. Bioregulation technique utilizes the soluble extracellular polymer from <i>Aspergillus niger</i> as a templating agent to construct high-performance catalysts for hydrogen and oxygen evolution reaction (HER and OER). This technique controls catalyst morphology, introduces biological N and S doping, and regulates the electronic structure of the catalyst surface. Biomolecule modification enhances surface hydrophilicity, and the nanostructure increases surface roughness and gas-release efficiency. Theoretical calculations show that the bioregulation technique shortens the d/p-band center, optimizing reaction intermediate adsorption and desorption. The Bio-Pt/Co<sub>3</sub>O<sub>4</sub> catalyst with trace Pt on the surface, designed with these strategies, achieves HER (<i>η</i><sub>10</sub> of 42 mV), OER (<i>η</i><sub>10</sub> of 221 mV), and overall water-splitting performance (1.51 V at 10 mA cm<sup>−2</sup>), maintaining stability for over 50 h, outperforming most Pt-based catalysts. Notably, using spent lithium-ion battery cathodes leachate, rich in Co<sup>2</sup>⁺, successfully replicates the experiment. This approach holds promise as a mainstream method for synthesizing high-performance materials in the future.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202413072\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202413072","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

结合多种设计策略往往能提高催化剂的性能,但通常成本高、可重复性低。目前迫切需要一种能在多种策略中提高催化剂性能的技术。本文介绍了一种新型生物调控技术,可同时控制形态、粒度、掺杂、界面工程和电子特性。生物调控技术利用黑曲霉的可溶性胞外聚合物作为模板剂,构建高性能的氢氧进化反应(HER 和 OER)催化剂。该技术可控制催化剂形态,引入生物 N 和 S 掺杂,并调节催化剂表面的电子结构。生物分子修饰增强了表面亲水性,纳米结构增加了表面粗糙度和气体释放效率。理论计算表明,生物调控技术缩短了 d/p 带中心,优化了反应中间体的吸附和解吸。采用这些策略设计的表面带有痕量铂的 Bio-Pt/Co3O4 催化剂实现了 HER(η10 为 42 mV)、OER(η10 为 221 mV)和整体分水性能(10 mA cm-2 时为 1.51 V),并能保持 50 小时以上的稳定性,优于大多数铂基催化剂。值得注意的是,使用富含 Co2⁺的废锂离子电池阴极浸出液成功地复制了实验。这种方法有望成为未来合成高性能材料的主流方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating Multiple Strategies Using Biotechnology to Design High-Performance Electrocatalysts for Hydrogen and Oxygen Evolution
Combining multiple design strategies often enhances catalyst performance but usually comes with high costs and low reproducibility. A technique that enhances catalyst performance in multiple strategies is urgently needed. Herein, a novel bioregulation technique is introduced, allowing simultaneous control over morphology, particle size, doping, interface engineering, and electronic properties. Bioregulation technique utilizes the soluble extracellular polymer from Aspergillus niger as a templating agent to construct high-performance catalysts for hydrogen and oxygen evolution reaction (HER and OER). This technique controls catalyst morphology, introduces biological N and S doping, and regulates the electronic structure of the catalyst surface. Biomolecule modification enhances surface hydrophilicity, and the nanostructure increases surface roughness and gas-release efficiency. Theoretical calculations show that the bioregulation technique shortens the d/p-band center, optimizing reaction intermediate adsorption and desorption. The Bio-Pt/Co3O4 catalyst with trace Pt on the surface, designed with these strategies, achieves HER (η10 of 42 mV), OER (η10 of 221 mV), and overall water-splitting performance (1.51 V at 10 mA cm−2), maintaining stability for over 50 h, outperforming most Pt-based catalysts. Notably, using spent lithium-ion battery cathodes leachate, rich in Co2⁺, successfully replicates the experiment. This approach holds promise as a mainstream method for synthesizing high-performance materials in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1