{"title":"拟南芥中高灵敏度的特定位点 SUMOylation 蛋白质组学","authors":"Tian Sang, Yaping Xu, Guochen Qin, Shasha Zhao, Chuan-Chi Hsu, Pengcheng Wang","doi":"10.1038/s41477-024-01783-z","DOIUrl":null,"url":null,"abstract":"SUMOylation—the attachment of a small ubiquitin-like modifier (SUMO) to target proteins—plays roles in controlling plant growth, nutrient signalling and stress responses. SUMOylation studies in plants are scarce because identifying SUMOylated proteins and their sites is challenging. To date, only around 80 SUMOylation sites have been identified. Here we introduce lysine-null SUMO1 into the Arabidopsis sumo1 sumo2 mutant and establish a two-step lysine-null SUMO enrichment method. We identified a site-specific SUMOylome comprising over 2,200 SUMOylation sites from 1,300 putative acceptors that function in numerous nuclear processes. SUMOylation marks occur on several motifs, differing from the canonical ψKxE motif in distant eukaryotes. Quantitative comparisons demonstrate that SUMOylation predominantly enhances the stability of SUMO1 acceptors. Our study delivers a highly sensitive and efficient method for site-specific SUMOylome studies and provides a comprehensive catalogue of Arabidopsis SUMOylation, serving as a valuable resource with which to further explore how SUMOylation regulates protein function. This study establishes an efficient method for site-specific SUMOylation proteomics, achieving a comprehensive SUMOylome comprising over 2,200 SUMOylation sites, which could serve as a useful tool and valuable resource for future research in plants.","PeriodicalId":18904,"journal":{"name":"Nature Plants","volume":"10 9","pages":"1330-1342"},"PeriodicalIF":15.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive site-specific SUMOylation proteomics in Arabidopsis\",\"authors\":\"Tian Sang, Yaping Xu, Guochen Qin, Shasha Zhao, Chuan-Chi Hsu, Pengcheng Wang\",\"doi\":\"10.1038/s41477-024-01783-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMOylation—the attachment of a small ubiquitin-like modifier (SUMO) to target proteins—plays roles in controlling plant growth, nutrient signalling and stress responses. SUMOylation studies in plants are scarce because identifying SUMOylated proteins and their sites is challenging. To date, only around 80 SUMOylation sites have been identified. Here we introduce lysine-null SUMO1 into the Arabidopsis sumo1 sumo2 mutant and establish a two-step lysine-null SUMO enrichment method. We identified a site-specific SUMOylome comprising over 2,200 SUMOylation sites from 1,300 putative acceptors that function in numerous nuclear processes. SUMOylation marks occur on several motifs, differing from the canonical ψKxE motif in distant eukaryotes. Quantitative comparisons demonstrate that SUMOylation predominantly enhances the stability of SUMO1 acceptors. Our study delivers a highly sensitive and efficient method for site-specific SUMOylome studies and provides a comprehensive catalogue of Arabidopsis SUMOylation, serving as a valuable resource with which to further explore how SUMOylation regulates protein function. This study establishes an efficient method for site-specific SUMOylation proteomics, achieving a comprehensive SUMOylome comprising over 2,200 SUMOylation sites, which could serve as a useful tool and valuable resource for future research in plants.\",\"PeriodicalId\":18904,\"journal\":{\"name\":\"Nature Plants\",\"volume\":\"10 9\",\"pages\":\"1330-1342\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Plants\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41477-024-01783-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Plants","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41477-024-01783-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Highly sensitive site-specific SUMOylation proteomics in Arabidopsis
SUMOylation—the attachment of a small ubiquitin-like modifier (SUMO) to target proteins—plays roles in controlling plant growth, nutrient signalling and stress responses. SUMOylation studies in plants are scarce because identifying SUMOylated proteins and their sites is challenging. To date, only around 80 SUMOylation sites have been identified. Here we introduce lysine-null SUMO1 into the Arabidopsis sumo1 sumo2 mutant and establish a two-step lysine-null SUMO enrichment method. We identified a site-specific SUMOylome comprising over 2,200 SUMOylation sites from 1,300 putative acceptors that function in numerous nuclear processes. SUMOylation marks occur on several motifs, differing from the canonical ψKxE motif in distant eukaryotes. Quantitative comparisons demonstrate that SUMOylation predominantly enhances the stability of SUMO1 acceptors. Our study delivers a highly sensitive and efficient method for site-specific SUMOylome studies and provides a comprehensive catalogue of Arabidopsis SUMOylation, serving as a valuable resource with which to further explore how SUMOylation regulates protein function. This study establishes an efficient method for site-specific SUMOylation proteomics, achieving a comprehensive SUMOylome comprising over 2,200 SUMOylation sites, which could serve as a useful tool and valuable resource for future research in plants.
期刊介绍:
Nature Plants is an online-only, monthly journal publishing the best research on plants — from their evolution, development, metabolism and environmental interactions to their societal significance.