{"title":"通过过程中的防御来调整 \"少量 \"分类","authors":"Xi Yang;Dechen Kong;Ren Lin;Nannan Wang;Xinbo Gao","doi":"10.1109/TIP.2024.3458858","DOIUrl":null,"url":null,"abstract":"Most few-shot learning methods employ either adaptive approaches or parameter amortization techniques. However, their reliance on pre-trained models presents a significant vulnerability. When an attacker’s trigger activates a hidden backdoor, it may result in the misclassification of images, profoundly affecting the model’s performance. In our research, we explore adaptive defenses against backdoor attacks for few-shot learning. We introduce a specialized stochastic process tailored to task characteristics that safeguards the classification model against attack-induced incorrect feature extraction. This process functions during forward propagation and is thus termed an “in-process defense.” Our method employs an adaptive strategy, effectively generating task-level representations, enabling rapid adaptation to pre-trained models, and proving effective in few-shot classification scenarios for countering backdoor attacks. We apply latent stochastic processes to approximate task distributions and derive task-level representations from the support set. This task-level representation guides feature extraction, leading to backdoor trigger mismatching and forming the foundation of our parameter defense strategy. Benchmark tests on Meta-Dataset reveal that our approach not only withstands backdoor attacks but also shows an improved adaptation in addressing few-shot classification tasks.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5232-5245"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adapting Few-Shot Classification via In-Process Defense\",\"authors\":\"Xi Yang;Dechen Kong;Ren Lin;Nannan Wang;Xinbo Gao\",\"doi\":\"10.1109/TIP.2024.3458858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most few-shot learning methods employ either adaptive approaches or parameter amortization techniques. However, their reliance on pre-trained models presents a significant vulnerability. When an attacker’s trigger activates a hidden backdoor, it may result in the misclassification of images, profoundly affecting the model’s performance. In our research, we explore adaptive defenses against backdoor attacks for few-shot learning. We introduce a specialized stochastic process tailored to task characteristics that safeguards the classification model against attack-induced incorrect feature extraction. This process functions during forward propagation and is thus termed an “in-process defense.” Our method employs an adaptive strategy, effectively generating task-level representations, enabling rapid adaptation to pre-trained models, and proving effective in few-shot classification scenarios for countering backdoor attacks. We apply latent stochastic processes to approximate task distributions and derive task-level representations from the support set. This task-level representation guides feature extraction, leading to backdoor trigger mismatching and forming the foundation of our parameter defense strategy. Benchmark tests on Meta-Dataset reveal that our approach not only withstands backdoor attacks but also shows an improved adaptation in addressing few-shot classification tasks.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"5232-5245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682488/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10682488/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adapting Few-Shot Classification via In-Process Defense
Most few-shot learning methods employ either adaptive approaches or parameter amortization techniques. However, their reliance on pre-trained models presents a significant vulnerability. When an attacker’s trigger activates a hidden backdoor, it may result in the misclassification of images, profoundly affecting the model’s performance. In our research, we explore adaptive defenses against backdoor attacks for few-shot learning. We introduce a specialized stochastic process tailored to task characteristics that safeguards the classification model against attack-induced incorrect feature extraction. This process functions during forward propagation and is thus termed an “in-process defense.” Our method employs an adaptive strategy, effectively generating task-level representations, enabling rapid adaptation to pre-trained models, and proving effective in few-shot classification scenarios for countering backdoor attacks. We apply latent stochastic processes to approximate task distributions and derive task-level representations from the support set. This task-level representation guides feature extraction, leading to backdoor trigger mismatching and forming the foundation of our parameter defense strategy. Benchmark tests on Meta-Dataset reveal that our approach not only withstands backdoor attacks but also shows an improved adaptation in addressing few-shot classification tasks.