何首乌基因型对移植地区的适应性极大地影响了根瘤微生物群落

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2024-09-18 DOI:10.1007/s11104-024-06913-2
Jiabin Shi, Piao Chen, Minming Zhu, Huihui Chen, Jinping Si, Lingshang Wu
{"title":"何首乌基因型对移植地区的适应性极大地影响了根瘤微生物群落","authors":"Jiabin Shi, Piao Chen, Minming Zhu, Huihui Chen, Jinping Si, Lingshang Wu","doi":"10.1007/s11104-024-06913-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Aims</h3><p><i>Polygonatum</i>, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected <i>Polygonatum</i> -associated microbiome and the fitness of the host plants.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and <i>Polygonatum</i> adaptation ability were elucidated.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p><i>P. kingianum</i> var. <i>grandifolium</i> (PG) was more adaptive than <i>P. kingianum</i> (PK) or <i>P. sibiricum</i> (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (<i>P</i> &lt; 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by <i>Polygonatum</i> than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of <i>Polygonatum</i> and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, <i>Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium</i> and <i>Talaromyces</i> in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as <i>Pseudomonas</i>, <i>Fusarium</i>, <i>Neocosmospora,</i> and <i>Tausonia</i>.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The adaptability of the <i>Polygonatum</i> genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of <i>Polygonatum</i>.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptation of Polygonatum genotypes to the areas of transplantation greatly influences the rhizospheric microbial community\",\"authors\":\"Jiabin Shi, Piao Chen, Minming Zhu, Huihui Chen, Jinping Si, Lingshang Wu\",\"doi\":\"10.1007/s11104-024-06913-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background and Aims</h3><p><i>Polygonatum</i>, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected <i>Polygonatum</i> -associated microbiome and the fitness of the host plants.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and <i>Polygonatum</i> adaptation ability were elucidated.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p><i>P. kingianum</i> var. <i>grandifolium</i> (PG) was more adaptive than <i>P. kingianum</i> (PK) or <i>P. sibiricum</i> (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (<i>P</i> &lt; 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by <i>Polygonatum</i> than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of <i>Polygonatum</i> and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, <i>Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium</i> and <i>Talaromyces</i> in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as <i>Pseudomonas</i>, <i>Fusarium</i>, <i>Neocosmospora,</i> and <i>Tausonia</i>.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The adaptability of the <i>Polygonatum</i> genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of <i>Polygonatum</i>.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":20223,\"journal\":{\"name\":\"Plant and Soil\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant and Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11104-024-06913-2\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-06913-2","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的 蓼科植物蓼属,是一种传统的食材和药材,在消除慢性和隐性饥饿方面具有巨大的潜力和适用性。方法 采用高通量测序方法调查微生物群落。结果 P. kingianum var. grandifolium(PG)比 P. kingianum(PK)或 P. sibiricum(PS)适应性更强,因为其根茎鲜重(RFW)和多糖含量(PSC)最高(P <0.05)。当 pH 值为 7.48 - 7.95 时,根茎鲜重(RFW)和多糖含量(PSC)最高,随着土壤酸化,根茎鲜重(RFW)和多糖含量(PSC)显著降低。根瘤菌群的多样性、群落结构和组成受到何首乌的影响比内层微生物群的影响更明显。何首乌根圈土壤中微生物的多样性和丰富度较高。特定微生物与何首乌的产量和质量以及土壤化学性质都有关系;PG 的产量最高与根圈土壤中的有益微生物有关,如异株菌-陨落菌-伞形菌-根瘤菌和塔拉氏菌,而 PK 和 PS 的产量低、质量差则与病原微生物有关,如假单胞菌、镰刀菌、新孢子菌和陶氏菌。结论 何首乌基因型的适应性与土壤 pH 值密切相关,这可能与根瘤土壤中有益微生物或病原微生物的生长有关,从而影响何首乌的生长和品质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptation of Polygonatum genotypes to the areas of transplantation greatly influences the rhizospheric microbial community

Background and Aims

Polygonatum, a classic source of food and traditional medicine, possess great potential and applicability in combating chronic and hidden hunger. To study the relationship between the selected Polygonatum -associated microbiome and the fitness of the host plants.

Methods

The microbial communities were investigated using a high-throughput sequencing method. Their association with the soil chemical properties and Polygonatum adaptation ability were elucidated.

Results

P. kingianum var. grandifolium (PG) was more adaptive than P. kingianum (PK) or P. sibiricum (PS) due to the highest rhizome fresh weight (RFW) and polysaccharide content (PSC) (P < 0.05). RFW and PSC reached the highest when the pH was 7.48 – 7.95 and showed a significant reduction with the soil acidification. The diversity, community structure, and composition of the rhizospheric microbiota were more significantly affected by Polygonatum than those of the endosphere. The microbial diversity and richness in the rhizosphere soils of PG were higher. Specific microorganisms were related to both the yield and quality of Polygonatum and the soil chemical properties; the highest for PG was associated with the beneficial microorganisms such as, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium and Talaromyces in the rhizospheric soil while the low yield and poor quality of PK and PS were linked with the pathogenic microorganisms such as Pseudomonas, Fusarium, Neocosmospora, and Tausonia.

Conclusion

The adaptability of the Polygonatum genotypes was closely related to the soil pH, which may connect with the growth of either beneficial or pathogenic microorganisms in the rhizosphere, thereby affecting the growth and quality of Polygonatum.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Relationship between nutrient accumulation in broomcorn millet (Panicum miliaceum L.) and microbial community under different salinity soils Unveiling nematode responses to afforestation from distributions of body size in a subalpine ecosystem Comparative physiology of xylem nickel loading in the hyperaccumulator Odontarrhena inflata and the non-accumulator Aurinia saxatilis Plant-soil feedback responses to drought are species-specific and only marginally predicted by root traits Reintroduction of native species in an ecological restoration program from a quartzite area of campos rupestres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1