用于 FS 到 FFPE 染色转移的多视角自监督生成对抗网络

Yiyang Lin;Yifeng Wang;Zijie Fang;Zexin Li;Xianchao Guan;Danling Jiang;Yongbing Zhang
{"title":"用于 FS 到 FFPE 染色转移的多视角自监督生成对抗网络","authors":"Yiyang Lin;Yifeng Wang;Zijie Fang;Zexin Li;Xianchao Guan;Danling Jiang;Yongbing Zhang","doi":"10.1109/TMI.2024.3460795","DOIUrl":null,"url":null,"abstract":"In clinical practice, frozen section (FS) images can be utilized to obtain the immediate pathological results of the patients in operation due to their fast production speed. However, compared with the formalin-fixed and paraffin-embedded (FFPE) images, the FS images greatly suffer from poor quality. Thus, it is of great significance to transfer the FS image to the FFPE one, which enables pathologists to observe high-quality images in operation. However, obtaining the paired FS and FFPE images is quite hard, so it is difficult to obtain accurate results using supervised methods. Apart from this, the FS to FFPE stain transfer faces many challenges. Firstly, the number and position of nuclei scattered throughout the image are hard to maintain during the transfer process. Secondly, transferring the blurry FS images to the clear FFPE ones is quite challenging. Thirdly, compared with the center regions of each patch, the edge regions are harder to transfer. To overcome these problems, a multi-perspective self-supervised GAN, incorporating three auxiliary tasks, is proposed to improve the performance of FS to FFPE stain transfer. Concretely, a nucleus consistency constraint is designed to enable the high-fidelity of nuclei, an FFPE guided image deblurring is proposed for improving the clarity, and a multi-field-of-view consistency constraint is designed to better generate the edge regions. Objective indicators and pathologists’ evaluation for experiments on the five datasets across different countries have demonstrated the effectiveness of our method. In addition, the validation in the downstream task of microsatellite instability prediction has also proved the performance improvement by transferring the FS images to FFPE ones. Our code link is <uri>https://github.com/linyiyang98/Self-Supervised-FS2FFPE.git</uri>.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"774-788"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Perspective Self-Supervised Generative Adversarial Network for FS to FFPE Stain Transfer\",\"authors\":\"Yiyang Lin;Yifeng Wang;Zijie Fang;Zexin Li;Xianchao Guan;Danling Jiang;Yongbing Zhang\",\"doi\":\"10.1109/TMI.2024.3460795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In clinical practice, frozen section (FS) images can be utilized to obtain the immediate pathological results of the patients in operation due to their fast production speed. However, compared with the formalin-fixed and paraffin-embedded (FFPE) images, the FS images greatly suffer from poor quality. Thus, it is of great significance to transfer the FS image to the FFPE one, which enables pathologists to observe high-quality images in operation. However, obtaining the paired FS and FFPE images is quite hard, so it is difficult to obtain accurate results using supervised methods. Apart from this, the FS to FFPE stain transfer faces many challenges. Firstly, the number and position of nuclei scattered throughout the image are hard to maintain during the transfer process. Secondly, transferring the blurry FS images to the clear FFPE ones is quite challenging. Thirdly, compared with the center regions of each patch, the edge regions are harder to transfer. To overcome these problems, a multi-perspective self-supervised GAN, incorporating three auxiliary tasks, is proposed to improve the performance of FS to FFPE stain transfer. Concretely, a nucleus consistency constraint is designed to enable the high-fidelity of nuclei, an FFPE guided image deblurring is proposed for improving the clarity, and a multi-field-of-view consistency constraint is designed to better generate the edge regions. Objective indicators and pathologists’ evaluation for experiments on the five datasets across different countries have demonstrated the effectiveness of our method. In addition, the validation in the downstream task of microsatellite instability prediction has also proved the performance improvement by transferring the FS images to FFPE ones. Our code link is <uri>https://github.com/linyiyang98/Self-Supervised-FS2FFPE.git</uri>.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 2\",\"pages\":\"774-788\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10680558/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680558/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Perspective Self-Supervised Generative Adversarial Network for FS to FFPE Stain Transfer
In clinical practice, frozen section (FS) images can be utilized to obtain the immediate pathological results of the patients in operation due to their fast production speed. However, compared with the formalin-fixed and paraffin-embedded (FFPE) images, the FS images greatly suffer from poor quality. Thus, it is of great significance to transfer the FS image to the FFPE one, which enables pathologists to observe high-quality images in operation. However, obtaining the paired FS and FFPE images is quite hard, so it is difficult to obtain accurate results using supervised methods. Apart from this, the FS to FFPE stain transfer faces many challenges. Firstly, the number and position of nuclei scattered throughout the image are hard to maintain during the transfer process. Secondly, transferring the blurry FS images to the clear FFPE ones is quite challenging. Thirdly, compared with the center regions of each patch, the edge regions are harder to transfer. To overcome these problems, a multi-perspective self-supervised GAN, incorporating three auxiliary tasks, is proposed to improve the performance of FS to FFPE stain transfer. Concretely, a nucleus consistency constraint is designed to enable the high-fidelity of nuclei, an FFPE guided image deblurring is proposed for improving the clarity, and a multi-field-of-view consistency constraint is designed to better generate the edge regions. Objective indicators and pathologists’ evaluation for experiments on the five datasets across different countries have demonstrated the effectiveness of our method. In addition, the validation in the downstream task of microsatellite instability prediction has also proved the performance improvement by transferring the FS images to FFPE ones. Our code link is https://github.com/linyiyang98/Self-Supervised-FS2FFPE.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Table of Contents Table of Contents Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1