Samuel J. Taylor, Jacob Stauber, Oliver Bohorquez, Goichi Tatsumi, Rajni Kumari, Joyeeta Chakraborty, Boris A. Bartholdy, Emily Schwenger, Sriram Sundaravel, Abdelbasset A. Farahat, Justin C. Wheat, Mendel Goldfinger, Amit Verma, Arvind Kumar, David W. Boykin, Kristy R. Stengel, Gregory M. K. Poon, Ulrich Steidl
{"title":"药理限制基因组结合位点可重定向 PU.1 先驱转录因子的活性","authors":"Samuel J. Taylor, Jacob Stauber, Oliver Bohorquez, Goichi Tatsumi, Rajni Kumari, Joyeeta Chakraborty, Boris A. Bartholdy, Emily Schwenger, Sriram Sundaravel, Abdelbasset A. Farahat, Justin C. Wheat, Mendel Goldfinger, Amit Verma, Arvind Kumar, David W. Boykin, Kristy R. Stengel, Gregory M. K. Poon, Ulrich Steidl","doi":"10.1038/s41588-024-01911-7","DOIUrl":null,"url":null,"abstract":"Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, ‘CLICK-on-CUT&Tag’, we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate. Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":null,"pages":null},"PeriodicalIF":31.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-024-01911-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Pharmacological restriction of genomic binding sites redirects PU.1 pioneer transcription factor activity\",\"authors\":\"Samuel J. Taylor, Jacob Stauber, Oliver Bohorquez, Goichi Tatsumi, Rajni Kumari, Joyeeta Chakraborty, Boris A. Bartholdy, Emily Schwenger, Sriram Sundaravel, Abdelbasset A. Farahat, Justin C. Wheat, Mendel Goldfinger, Amit Verma, Arvind Kumar, David W. Boykin, Kristy R. Stengel, Gregory M. K. Poon, Ulrich Steidl\",\"doi\":\"10.1038/s41588-024-01911-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, ‘CLICK-on-CUT&Tag’, we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate. Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate.\",\"PeriodicalId\":18985,\"journal\":{\"name\":\"Nature genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":31.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41588-024-01911-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41588-024-01911-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-024-01911-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
转录因子(TF)的 DNA 结合动力学决定着细胞的命运和特性。然而,我们通过药物控制转录因子定位的能力有限。在这里,我们利用化学驱动的结合位点限制,实现了与许多造血恶性肿瘤相关的先驱转录因子 PU.1 的稳健且具有 DNA 序列特异性的重新分布。通过一种创新技术 "CLICK-on-CUT&Tag",我们描述了PU.1新图案的层次结构,预测了在结合位点限制下PU.1词簇中的占位情况。对结合位点限制的时间和单分子研究揭示了原生 PU.1 的先驱动态,并确定了 PU.1 定位于二级结合位点所驱动的另一个目标基因集的矛盾激活。基因阻断和位点特异性报告实验证实了这些转录变化。结合位点限制和随后的 PU.1 网络重新布线导致原代人类白血病细胞分化。总之,可以利用药理诱导的 TF 重新分布来控制 TF 定位、激活交替基因网络并指导细胞命运。
Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.1, a pioneer TF pertinent to many hematopoietic malignancies. Through an innovative technique, ‘CLICK-on-CUT&Tag’, we characterize the hierarchy of de novo PU.1 motifs, predicting occupancy in the PU.1 cistrome under binding site restriction. Temporal and single-molecule studies of binding site restriction uncover the pioneering dynamics of native PU.1 and identify the paradoxical activation of an alternate target gene set driven by PU.1 localization to second-tier binding sites. These transcriptional changes were corroborated by genetic blockade and site-specific reporter assays. Binding site restriction and subsequent PU.1 network rewiring causes primary human leukemia cells to differentiate. In summary, pharmacologically induced TF redistribution can be harnessed to govern TF localization, actuate alternate gene networks and direct cell fate. Chemically driven blockade of PU.1 binding sites leads to its genome-wide redistribution. PU.1 network rewiring causes human acute myeloid leukemia cells to differentiate.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution