二维 CrSBr 在开放空腔中产生磁可控的激子-极化子

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-09-18 DOI:10.1002/adfm.202411589
Chun Li, Chao Shen, Nai Jiang, Kwok Kwan Tang, Xinfeng Liu, Jiaqi Guo, Yin Liang, Jiepeng Song, Xinyi Deng, Qing Zhang
{"title":"二维 CrSBr 在开放空腔中产生磁可控的激子-极化子","authors":"Chun Li, Chao Shen, Nai Jiang, Kwok Kwan Tang, Xinfeng Liu, Jiaqi Guo, Yin Liang, Jiepeng Song, Xinyi Deng, Qing Zhang","doi":"10.1002/adfm.202411589","DOIUrl":null,"url":null,"abstract":"2D van der Waals (vdW) layered materials exhibit significant exciton binding energy and versatile stacking options, making them ideal for room-temperature exciton-polariton devices used in low-threshold lasing, nonlinear optical switching, and quantum computing. However, most existing systems depend on external optical microcavities coupled with single monolayers, leading to limited controllability and increased costs. Here, external cavity-free vdW magnet CrSBr crystals are presented that feature magnetically controllable self-hybridized exciton-polaritons that remain stable up to room temperature. The ultrastrong exciton-photon coupling suppresses donor-, phonon-, and defect-related emissions. Furthermore, the exciton-polariton dispersion and emission spectra can be effectively controlled by adjusting the magnetic field, temperature, and CrSBr thickness. This vdW exciton-polariton material platform, demonstrating remarkable magnetic responsiveness in open cavity configurations under ambient conditions, paves the way for the development of compact, fast, and low-loss spin, quantum, and magneto-photonic devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity\",\"authors\":\"Chun Li, Chao Shen, Nai Jiang, Kwok Kwan Tang, Xinfeng Liu, Jiaqi Guo, Yin Liang, Jiepeng Song, Xinyi Deng, Qing Zhang\",\"doi\":\"10.1002/adfm.202411589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2D van der Waals (vdW) layered materials exhibit significant exciton binding energy and versatile stacking options, making them ideal for room-temperature exciton-polariton devices used in low-threshold lasing, nonlinear optical switching, and quantum computing. However, most existing systems depend on external optical microcavities coupled with single monolayers, leading to limited controllability and increased costs. Here, external cavity-free vdW magnet CrSBr crystals are presented that feature magnetically controllable self-hybridized exciton-polaritons that remain stable up to room temperature. The ultrastrong exciton-photon coupling suppresses donor-, phonon-, and defect-related emissions. Furthermore, the exciton-polariton dispersion and emission spectra can be effectively controlled by adjusting the magnetic field, temperature, and CrSBr thickness. This vdW exciton-polariton material platform, demonstrating remarkable magnetic responsiveness in open cavity configurations under ambient conditions, paves the way for the development of compact, fast, and low-loss spin, quantum, and magneto-photonic devices.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202411589\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202411589","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维范德瓦尔斯(vdW)层状材料具有强大的激子结合能和多种堆叠选择,是室温激子-极化子器件的理想选择,可用于低阈值激光、非线性光学开关和量子计算。然而,大多数现有系统都依赖于与单层膜耦合的外部光学微腔,导致可控性有限和成本增加。这里介绍的无外部空腔 vdW 磁体 CrSBr 晶体具有磁性可控的自杂化激子-极化子特性,可在室温下保持稳定。超强的激子-光子耦合抑制了供体、声子和缺陷相关发射。此外,通过调节磁场、温度和 CrSBr 厚度,可以有效控制激子-极化子色散和发射光谱。这种 vdW 激子-极化子材料平台在环境条件下的开腔配置中表现出显著的磁响应性,为开发紧凑、快速、低损耗的自旋、量子和磁光子器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity
2D van der Waals (vdW) layered materials exhibit significant exciton binding energy and versatile stacking options, making them ideal for room-temperature exciton-polariton devices used in low-threshold lasing, nonlinear optical switching, and quantum computing. However, most existing systems depend on external optical microcavities coupled with single monolayers, leading to limited controllability and increased costs. Here, external cavity-free vdW magnet CrSBr crystals are presented that feature magnetically controllable self-hybridized exciton-polaritons that remain stable up to room temperature. The ultrastrong exciton-photon coupling suppresses donor-, phonon-, and defect-related emissions. Furthermore, the exciton-polariton dispersion and emission spectra can be effectively controlled by adjusting the magnetic field, temperature, and CrSBr thickness. This vdW exciton-polariton material platform, demonstrating remarkable magnetic responsiveness in open cavity configurations under ambient conditions, paves the way for the development of compact, fast, and low-loss spin, quantum, and magneto-photonic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1