采用超快溴化学反应的可充电 Mg-Br2 电池

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-09-18 DOI:10.1021/jacs.4c07707
Longyuan Guo, Aosai Chen, Aoxuan Wang, Zhenglin Hu, Haimin Zhang, Jiayan Luo
{"title":"采用超快溴化学反应的可充电 Mg-Br2 电池","authors":"Longyuan Guo, Aosai Chen, Aoxuan Wang, Zhenglin Hu, Haimin Zhang, Jiayan Luo","doi":"10.1021/jacs.4c07707","DOIUrl":null,"url":null,"abstract":"A sustainable society necessitates the support of diversified energy storage systems. Magnesium metal batteries, known for the environmental friendliness, safety of dendrite-less, cost-effective, and high volumetric capacity of magnesium metal, exhibit promising prospects. However, the high charge density of the magnesium ion leads to sluggish ion diffusion in cathodes, posing challenges for developing magnesium metal battery systems with high power and high energy density. Here, inspired by the Hard–Soft-Acid–Base theory, we propose a soft-anion-induced bond weakening strategy to address the diffusion difficulty. The bulky and broadly electron-distributed succinimide ion (SN<sup>–</sup>) in SN–Mg–Br significantly weakens the Mg–Br bond, promoting rapid magnesium ion transport and enabling ultrafast bromine chemistry, thus realizing a highly rechargeable Mg–Br<sub>2</sub> battery prototype. Benefiting from the solubilization of SN<sup>–</sup>, the Mg–Br<sub>2</sub> batteries achieve a high discharge plateau of 2.7 V, a remarkable specific capacity of 326 mAh g<sub>Br</sub><sup>–1</sup>, and an impressive lifespan of 400 cycles. Attributed to the half–half diffusion/adsorption–desorption control process mechanism, the batteries can be well cycled under high-rate charging at 10 C and ultralow temperatures down to −55 °C. This bond weakening strategy may stimulate the development of battery systems with similar high charge density to magnesium ion, toward high power and high energy density, paving the way for sustainable energy storage systems.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rechargeable Mg–Br2 Battery with Ultrafast Bromine Chemistry\",\"authors\":\"Longyuan Guo, Aosai Chen, Aoxuan Wang, Zhenglin Hu, Haimin Zhang, Jiayan Luo\",\"doi\":\"10.1021/jacs.4c07707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sustainable society necessitates the support of diversified energy storage systems. Magnesium metal batteries, known for the environmental friendliness, safety of dendrite-less, cost-effective, and high volumetric capacity of magnesium metal, exhibit promising prospects. However, the high charge density of the magnesium ion leads to sluggish ion diffusion in cathodes, posing challenges for developing magnesium metal battery systems with high power and high energy density. Here, inspired by the Hard–Soft-Acid–Base theory, we propose a soft-anion-induced bond weakening strategy to address the diffusion difficulty. The bulky and broadly electron-distributed succinimide ion (SN<sup>–</sup>) in SN–Mg–Br significantly weakens the Mg–Br bond, promoting rapid magnesium ion transport and enabling ultrafast bromine chemistry, thus realizing a highly rechargeable Mg–Br<sub>2</sub> battery prototype. Benefiting from the solubilization of SN<sup>–</sup>, the Mg–Br<sub>2</sub> batteries achieve a high discharge plateau of 2.7 V, a remarkable specific capacity of 326 mAh g<sub>Br</sub><sup>–1</sup>, and an impressive lifespan of 400 cycles. Attributed to the half–half diffusion/adsorption–desorption control process mechanism, the batteries can be well cycled under high-rate charging at 10 C and ultralow temperatures down to −55 °C. This bond weakening strategy may stimulate the development of battery systems with similar high charge density to magnesium ion, toward high power and high energy density, paving the way for sustainable energy storage systems.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c07707\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c07707","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可持续发展的社会需要多样化的能源储存系统的支持。镁金属电池以环保、无树枝状晶粒的安全性、高性价比和高容量而著称,前景广阔。然而,镁离子的高电荷密度导致阴极中的离子扩散缓慢,给开发高功率和高能量密度的镁金属电池系统带来了挑战。在硬-软-酸-碱理论的启发下,我们提出了一种软离子诱导的键弱化策略来解决扩散难题。SN-Mg-Br 中体积庞大、电子分布广泛的琥珀酰亚胺离子(SN-)能显著削弱 Mg-Br 键,促进镁离子的快速传输,实现超快溴化学反应,从而实现高度可充电的 Mg-Br2 电池原型。得益于 SN- 的增溶作用,Mg-Br2 电池实现了 2.7 V 的高放电平台,比容量高达 326 mAh gBr-1,使用寿命长达 400 次。由于采用了半扩散/吸附-解吸控制过程机制,电池可在 10 ℃ 的高速充电和低至 -55 ℃ 的超低温条件下循环使用。这种键弱化策略可促进开发与镁离子类似的高电荷密度、高功率和高能量密度的电池系统,为可持续储能系统铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rechargeable Mg–Br2 Battery with Ultrafast Bromine Chemistry
A sustainable society necessitates the support of diversified energy storage systems. Magnesium metal batteries, known for the environmental friendliness, safety of dendrite-less, cost-effective, and high volumetric capacity of magnesium metal, exhibit promising prospects. However, the high charge density of the magnesium ion leads to sluggish ion diffusion in cathodes, posing challenges for developing magnesium metal battery systems with high power and high energy density. Here, inspired by the Hard–Soft-Acid–Base theory, we propose a soft-anion-induced bond weakening strategy to address the diffusion difficulty. The bulky and broadly electron-distributed succinimide ion (SN) in SN–Mg–Br significantly weakens the Mg–Br bond, promoting rapid magnesium ion transport and enabling ultrafast bromine chemistry, thus realizing a highly rechargeable Mg–Br2 battery prototype. Benefiting from the solubilization of SN, the Mg–Br2 batteries achieve a high discharge plateau of 2.7 V, a remarkable specific capacity of 326 mAh gBr–1, and an impressive lifespan of 400 cycles. Attributed to the half–half diffusion/adsorption–desorption control process mechanism, the batteries can be well cycled under high-rate charging at 10 C and ultralow temperatures down to −55 °C. This bond weakening strategy may stimulate the development of battery systems with similar high charge density to magnesium ion, toward high power and high energy density, paving the way for sustainable energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Synthesis of Mesoporous Catechin Nanoparticles as Biocompatible Drug-Free Antibacterial Mesoformulation Heavy-Atom Tunneling in Ring-Closure Reactions of Beryllium Ozonide Complexes Structural Isomerism in Bimetallic Ag20Cu12 Nanoclusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1