Stefano Aretusini, Arantzazu Nuñez Cascajero, Chiara Cornelio, Xabier Barrero Echevarria, Elena Spagnuolo, Alberto Tapetado, Carmen Vazquez, Giulio Di Toro, Massimo Cocco
{"title":"含钙华岩断层地震动力削弱过程中的机械能耗散","authors":"Stefano Aretusini, Arantzazu Nuñez Cascajero, Chiara Cornelio, Xabier Barrero Echevarria, Elena Spagnuolo, Alberto Tapetado, Carmen Vazquez, Giulio Di Toro, Massimo Cocco","doi":"10.1029/2024JB028927","DOIUrl":null,"url":null,"abstract":"<p>Earthquakes are frictional instabilities caused by the shear stress decrease, that is, dynamic weakening, of faults with slip and slip rate. During dynamic weakening, shear stress depends on slip, slip rate, and temperature, according to constitutive laws governing the earthquake rupture process. In the laboratory, technical limitations in measuring temperature during frictional instabilities inhibit the investigation and interpretation of shear stress evolution. Here we conduct high velocity friction experiments on calcite-bearing simulated faults, both on bare-rock and on gouge samples, at 20–30 MPa normal stress, 1–6 m/s slip rate and 1–20 m total slip. Seismic slip pulses are reproduced by imposing boxcar and regularized Yoffe slip rate functions. We measured, together with shear stress, slip, and slip rate, the temperature evolution on the fault by employing an innovative two-color fiber optic pyrometer. The comparison between modeled and measured temperature reveals that for calcite-bearing faults the heat sink caused by decarbonation reaction controls the temperature evolution. In bare-rocks, energy is dissipated as frictional heat, and temperature increase is buffered by the heat sink of the calcite decarbonation reaction. In gouges, energy is dissipated as frictional heat and for plastic deformation processes, balanced by the heat sink caused by the decarbonation reaction enhanced by the mechanochemical effect. Our results suggest that in calcite-bearing rocks, a common fault zone material for earthquake sources in the continental crust at shallow depth, the type of fault materials (bare-rocks vs. gouges) controls the energy dissipation during seismic slip.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB028927","citationCount":"0","resultStr":"{\"title\":\"Mechanical Energy Dissipation During Seismic Dynamic Weakening in Calcite-Bearing Faults\",\"authors\":\"Stefano Aretusini, Arantzazu Nuñez Cascajero, Chiara Cornelio, Xabier Barrero Echevarria, Elena Spagnuolo, Alberto Tapetado, Carmen Vazquez, Giulio Di Toro, Massimo Cocco\",\"doi\":\"10.1029/2024JB028927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Earthquakes are frictional instabilities caused by the shear stress decrease, that is, dynamic weakening, of faults with slip and slip rate. During dynamic weakening, shear stress depends on slip, slip rate, and temperature, according to constitutive laws governing the earthquake rupture process. In the laboratory, technical limitations in measuring temperature during frictional instabilities inhibit the investigation and interpretation of shear stress evolution. Here we conduct high velocity friction experiments on calcite-bearing simulated faults, both on bare-rock and on gouge samples, at 20–30 MPa normal stress, 1–6 m/s slip rate and 1–20 m total slip. Seismic slip pulses are reproduced by imposing boxcar and regularized Yoffe slip rate functions. We measured, together with shear stress, slip, and slip rate, the temperature evolution on the fault by employing an innovative two-color fiber optic pyrometer. The comparison between modeled and measured temperature reveals that for calcite-bearing faults the heat sink caused by decarbonation reaction controls the temperature evolution. In bare-rocks, energy is dissipated as frictional heat, and temperature increase is buffered by the heat sink of the calcite decarbonation reaction. In gouges, energy is dissipated as frictional heat and for plastic deformation processes, balanced by the heat sink caused by the decarbonation reaction enhanced by the mechanochemical effect. Our results suggest that in calcite-bearing rocks, a common fault zone material for earthquake sources in the continental crust at shallow depth, the type of fault materials (bare-rocks vs. gouges) controls the energy dissipation during seismic slip.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 9\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB028927\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB028927\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB028927","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Mechanical Energy Dissipation During Seismic Dynamic Weakening in Calcite-Bearing Faults
Earthquakes are frictional instabilities caused by the shear stress decrease, that is, dynamic weakening, of faults with slip and slip rate. During dynamic weakening, shear stress depends on slip, slip rate, and temperature, according to constitutive laws governing the earthquake rupture process. In the laboratory, technical limitations in measuring temperature during frictional instabilities inhibit the investigation and interpretation of shear stress evolution. Here we conduct high velocity friction experiments on calcite-bearing simulated faults, both on bare-rock and on gouge samples, at 20–30 MPa normal stress, 1–6 m/s slip rate and 1–20 m total slip. Seismic slip pulses are reproduced by imposing boxcar and regularized Yoffe slip rate functions. We measured, together with shear stress, slip, and slip rate, the temperature evolution on the fault by employing an innovative two-color fiber optic pyrometer. The comparison between modeled and measured temperature reveals that for calcite-bearing faults the heat sink caused by decarbonation reaction controls the temperature evolution. In bare-rocks, energy is dissipated as frictional heat, and temperature increase is buffered by the heat sink of the calcite decarbonation reaction. In gouges, energy is dissipated as frictional heat and for plastic deformation processes, balanced by the heat sink caused by the decarbonation reaction enhanced by the mechanochemical effect. Our results suggest that in calcite-bearing rocks, a common fault zone material for earthquake sources in the continental crust at shallow depth, the type of fault materials (bare-rocks vs. gouges) controls the energy dissipation during seismic slip.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.