用高斯和增强平面波方法计算时变密度泛函理论的激发态作用力

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2024-09-18 DOI:10.1021/acs.jctc.4c00614
Beliz Sertcan Gökmen, Jürg Hutter, Anna-Sophia Hehn
{"title":"用高斯和增强平面波方法计算时变密度泛函理论的激发态作用力","authors":"Beliz Sertcan Gökmen, Jürg Hutter, Anna-Sophia Hehn","doi":"10.1021/acs.jctc.4c00614","DOIUrl":null,"url":null,"abstract":"Augmented plane wave methods enable an efficient description of atom-centered or localized features of the electronic density, circumventing high energy cutoffs and thus prohibitive computational costs of pure plane wave formulations. To complement existing implementations for ground-state properties and excitation energies, we present the extension of the Gaussian and augmented plane wave method to excited-state nuclear gradients within the Tamm–Dancoff approximation of time-dependent density functional theory and its implementation in the CP2K program package. Benchmarks for a test set of 35 small molecules demonstrate that maximum errors in the nuclear forces for excited states of singlet and triplet spin multiplicity are smaller than 0.1 eV/Å. The method is furthermore applied to the calculation of the zero-phonon line of defective hexagonal boron nitride. This spectral feature is reproduced with an error of 0.6 eV in comparison to GW–Bethe–Salpeter reference computations and 0.4 eV in comparison to experimental measurements. Accuracy assessments and applications thus demonstrate the potential use of the outlined developments for large-scale applications on excited-state properties of extended systems.","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excited-State Forces with the Gaussian and Augmented Plane Wave Method for the Tamm–Dancoff Approximation of Time-Dependent Density Functional Theory\",\"authors\":\"Beliz Sertcan Gökmen, Jürg Hutter, Anna-Sophia Hehn\",\"doi\":\"10.1021/acs.jctc.4c00614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Augmented plane wave methods enable an efficient description of atom-centered or localized features of the electronic density, circumventing high energy cutoffs and thus prohibitive computational costs of pure plane wave formulations. To complement existing implementations for ground-state properties and excitation energies, we present the extension of the Gaussian and augmented plane wave method to excited-state nuclear gradients within the Tamm–Dancoff approximation of time-dependent density functional theory and its implementation in the CP2K program package. Benchmarks for a test set of 35 small molecules demonstrate that maximum errors in the nuclear forces for excited states of singlet and triplet spin multiplicity are smaller than 0.1 eV/Å. The method is furthermore applied to the calculation of the zero-phonon line of defective hexagonal boron nitride. This spectral feature is reproduced with an error of 0.6 eV in comparison to GW–Bethe–Salpeter reference computations and 0.4 eV in comparison to experimental measurements. Accuracy assessments and applications thus demonstrate the potential use of the outlined developments for large-scale applications on excited-state properties of extended systems.\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.4c00614\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c00614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

增强平面波方法能够有效描述以原子为中心或局部的电子密度特征,避开了纯平面波公式的高能量截止点和令人望而却步的计算成本。为了补充现有的基态性质和激发能量的实现方法,我们介绍了高斯和增强平面波方法在时变密度泛函理论的塔姆-丹可夫近似中对激发态核梯度的扩展及其在 CP2K 程序包中的实现。对 35 个小分子测试集的基准测试表明,单重和三重自旋多重性激发态核力的最大误差小于 0.1 eV/Å。该方法还被进一步应用于计算有缺陷的六方氮化硼的零声子线。与 GW-Bethe-Salpeter 参考计算结果相比,该光谱特征的再现误差为 0.6 eV;与实验测量结果相比,误差为 0.4 eV。因此,精确度评估和应用证明了所概述的开发成果在扩展系统激发态特性的大规模应用中的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Excited-State Forces with the Gaussian and Augmented Plane Wave Method for the Tamm–Dancoff Approximation of Time-Dependent Density Functional Theory
Augmented plane wave methods enable an efficient description of atom-centered or localized features of the electronic density, circumventing high energy cutoffs and thus prohibitive computational costs of pure plane wave formulations. To complement existing implementations for ground-state properties and excitation energies, we present the extension of the Gaussian and augmented plane wave method to excited-state nuclear gradients within the Tamm–Dancoff approximation of time-dependent density functional theory and its implementation in the CP2K program package. Benchmarks for a test set of 35 small molecules demonstrate that maximum errors in the nuclear forces for excited states of singlet and triplet spin multiplicity are smaller than 0.1 eV/Å. The method is furthermore applied to the calculation of the zero-phonon line of defective hexagonal boron nitride. This spectral feature is reproduced with an error of 0.6 eV in comparison to GW–Bethe–Salpeter reference computations and 0.4 eV in comparison to experimental measurements. Accuracy assessments and applications thus demonstrate the potential use of the outlined developments for large-scale applications on excited-state properties of extended systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
A Method for Treating Significant Conformational Changes in Alchemical Free Energy Simulations of Protein–Ligand Binding Massive Assessment of the Geometries of Atmospheric Molecular Clusters Adaptive Variational Quantum Computing Approaches for Green’s Functions and Nonlinear Susceptibilities Relativistic Correction from the Four-Body Nonadiabatic Exponential Wave Function Nutmeg and SPICE: Models and Data for Biomolecular Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1