{"title":"扩大二氧化碳和一氧化碳电解槽的规模","authors":"Thomas Burdyny , Fokko M. Mulder","doi":"10.1016/j.joule.2024.08.010","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical CO<sub>2</sub> reduction aims to compete with Power-to-X alternatives but is well behind the scales of water electrolyzers and thermochemical reactors. In a recent issue of <em>Nature Chemical Engineering</em>, Crandall and co-workers demonstrate a 1000 cm<sup>2</sup> tandem CO<sub>2</sub>/CO electrolyzer for acetate production. The work invites discussion on scientific and engineering scale-up challenges.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 9","pages":"Pages 2449-2452"},"PeriodicalIF":38.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scale-up of CO2 and CO electrolyzers\",\"authors\":\"Thomas Burdyny , Fokko M. Mulder\",\"doi\":\"10.1016/j.joule.2024.08.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical CO<sub>2</sub> reduction aims to compete with Power-to-X alternatives but is well behind the scales of water electrolyzers and thermochemical reactors. In a recent issue of <em>Nature Chemical Engineering</em>, Crandall and co-workers demonstrate a 1000 cm<sup>2</sup> tandem CO<sub>2</sub>/CO electrolyzer for acetate production. The work invites discussion on scientific and engineering scale-up challenges.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 9\",\"pages\":\"Pages 2449-2452\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124003891\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003891","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrochemical CO2 reduction aims to compete with Power-to-X alternatives but is well behind the scales of water electrolyzers and thermochemical reactors. In a recent issue of Nature Chemical Engineering, Crandall and co-workers demonstrate a 1000 cm2 tandem CO2/CO electrolyzer for acetate production. The work invites discussion on scientific and engineering scale-up challenges.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.