通过硫酸盐在 NiFeBa-LDH 上的化学固定实现 10 000 H 以上的稳定海水电解

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-09-18 DOI:10.1002/adma.202411302
Haocheng Chen, Pingying Liu, Wenbo Li, Wenwen Xu, Yingjie Wen, Sixie Zhang, Li Yi, Yeqi Dai, Xu Chen, Sheng Dai, Ziqi Tian, Liang Chen, Zhiyi Lu
{"title":"通过硫酸盐在 NiFeBa-LDH 上的化学固定实现 10 000 H 以上的稳定海水电解","authors":"Haocheng Chen, Pingying Liu, Wenbo Li, Wenwen Xu, Yingjie Wen, Sixie Zhang, Li Yi, Yeqi Dai, Xu Chen, Sheng Dai, Ziqi Tian, Liang Chen, Zhiyi Lu","doi":"10.1002/adma.202411302","DOIUrl":null,"url":null,"abstract":"Although hydrogen production through seawater electrolysis combined with offshore renewable energy can significantly reduce the cost, the corrosive anions in seawater strictly limit the commercialization of direct seawater electrolysis technology. Here, it is discovered that electrolytic anode can be uniformly protected in a seawater environment by constructing NiFeBa-LDH catalyst assisted with additional SO<sub>4</sub><sup>2−</sup> in the electrolyte. In experiments, the NiFeBa-LDH achieves unprecedented stability over 10 000 h at 400 mA cm<sup>−2</sup> in both alkaline saline electrolyte and alkaline seawater. Characterizations and simulations reveal that the atomically dispersed Ba<sup>2+</sup> enables the chemical fixation of free SO<sub>4</sub><sup>2−</sup> on the surface, which generates a dense SO<sub>4</sub><sup>2−</sup> layer to repel Cl<sup>−</sup> along with the preferentially adsorbed SO<sub>4</sub><sup>2−</sup> in the presence of an applied electric field. In terms of the simplicity and effectiveness of catalyst design, it is confident that it can be a beacon for the commercialization of seawater electrolysis technology.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH\",\"authors\":\"Haocheng Chen, Pingying Liu, Wenbo Li, Wenwen Xu, Yingjie Wen, Sixie Zhang, Li Yi, Yeqi Dai, Xu Chen, Sheng Dai, Ziqi Tian, Liang Chen, Zhiyi Lu\",\"doi\":\"10.1002/adma.202411302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although hydrogen production through seawater electrolysis combined with offshore renewable energy can significantly reduce the cost, the corrosive anions in seawater strictly limit the commercialization of direct seawater electrolysis technology. Here, it is discovered that electrolytic anode can be uniformly protected in a seawater environment by constructing NiFeBa-LDH catalyst assisted with additional SO<sub>4</sub><sup>2−</sup> in the electrolyte. In experiments, the NiFeBa-LDH achieves unprecedented stability over 10 000 h at 400 mA cm<sup>−2</sup> in both alkaline saline electrolyte and alkaline seawater. Characterizations and simulations reveal that the atomically dispersed Ba<sup>2+</sup> enables the chemical fixation of free SO<sub>4</sub><sup>2−</sup> on the surface, which generates a dense SO<sub>4</sub><sup>2−</sup> layer to repel Cl<sup>−</sup> along with the preferentially adsorbed SO<sub>4</sub><sup>2−</sup> in the presence of an applied electric field. In terms of the simplicity and effectiveness of catalyst design, it is confident that it can be a beacon for the commercialization of seawater electrolysis technology.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202411302\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202411302","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

虽然通过海水电解结合海上可再生能源制氢可大幅降低成本,但海水中的腐蚀性阴离子严格限制了直接海水电解技术的商业化。本文发现,通过在电解液中添加 SO42- 来构建 NiFeBa-LDH 催化剂,可以在海水环境中对电解阳极进行均匀保护。在实验中,NiFeBa-LDH 在碱性盐电解质和碱性海水中均实现了前所未有的稳定性,在 400 mA cm-2 的条件下可工作 10 000 小时。表征和模拟显示,原子分散的 Ba2+ 使游离的 SO42- 化学固定在表面,从而产生了致密的 SO42- 层,在外加电场的作用下与优先吸附的 SO42- 一起排斥 Cl-。从催化剂设计的简易性和有效性来看,它有信心成为海水电解技术商业化的灯塔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH
Although hydrogen production through seawater electrolysis combined with offshore renewable energy can significantly reduce the cost, the corrosive anions in seawater strictly limit the commercialization of direct seawater electrolysis technology. Here, it is discovered that electrolytic anode can be uniformly protected in a seawater environment by constructing NiFeBa-LDH catalyst assisted with additional SO42− in the electrolyte. In experiments, the NiFeBa-LDH achieves unprecedented stability over 10 000 h at 400 mA cm−2 in both alkaline saline electrolyte and alkaline seawater. Characterizations and simulations reveal that the atomically dispersed Ba2+ enables the chemical fixation of free SO42− on the surface, which generates a dense SO42− layer to repel Cl along with the preferentially adsorbed SO42− in the presence of an applied electric field. In terms of the simplicity and effectiveness of catalyst design, it is confident that it can be a beacon for the commercialization of seawater electrolysis technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Advancing Heterogeneous Organic Synthesis With Coordination Chemistry-Empowered Single-Atom Catalysts Unveiling the In Situ Evolution of Li2O-Rich Solid Electrolyte Interface on CoOx Embedded Carbon Fibers as Li Anode Host Mass Production of Multishell Hollow SiO2 Spheres With Adjustable Void Ratios and Pore Structures Visible-Near Infrared Independent Modulation of Hexagonal WO3 Induced by Ionic Insertion Sequence and Cavity Characteristics Stable Seawater Electrolysis Over 10 000 H via Chemical Fixation of Sulfate on NiFeBa-LDH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1