LVI-PathNet:用于检测肺腺癌全切片图像中淋巴管侵犯的分割-分类管道

Anna Timakova , Vladislav Ananev , Alexey Fayzullin , Egor Zemnuhov , Egor Rumyantsev , Andrey Zharov , Nicolay Zharkov , Varvara Zotova , Elena Shchelokova , Tatiana Demura , Peter Timashev , Vladimir Makarov
{"title":"LVI-PathNet:用于检测肺腺癌全切片图像中淋巴管侵犯的分割-分类管道","authors":"Anna Timakova ,&nbsp;Vladislav Ananev ,&nbsp;Alexey Fayzullin ,&nbsp;Egor Zemnuhov ,&nbsp;Egor Rumyantsev ,&nbsp;Andrey Zharov ,&nbsp;Nicolay Zharkov ,&nbsp;Varvara Zotova ,&nbsp;Elena Shchelokova ,&nbsp;Tatiana Demura ,&nbsp;Peter Timashev ,&nbsp;Vladimir Makarov","doi":"10.1016/j.jpi.2024.100395","DOIUrl":null,"url":null,"abstract":"<div><p>Lymphovascular invasion (LVI) in lung cancer is a significant prognostic factor that influences treatment and outcomes, yet its reliable detection is challenging due to interobserver variability. This study aims to develop a deep learning model for LVI detection using whole slide images (WSIs) and evaluate its effectiveness within a pathologist's information system. Experienced pathologists annotated blood vessels and invading tumor cells in 162 WSIs of non-mucinous lung adenocarcinoma sourced from two external and one internal datasets. Two models were trained to segment vessels and identify images with LVI features. DeepLabV3+ model achieved an Intersection-over-Union of 0.8840 and an area under the receiver operating characteristic curve (AUC-ROC) of 0.9869 in vessel segmentation. For LVI classification, the ensemble model achieved a F1-score of 0.9683 and an AUC-ROC of 0.9987. The model demonstrated robustness and was unaffected by variations in staining and image quality. The pilot study showed that pathologists' evaluation time for LVI detecting decreased by an average of 16.95%, and by 21.5% in “hard cases”. The model facilitated consistent diagnostic assessments, suggesting potential for broader applications in detecting pathological changes in blood vessels and other lung pathologies.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100395"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2153353924000348/pdfft?md5=9a1e9217891b1539c144069b2cb2703f&pid=1-s2.0-S2153353924000348-main.pdf","citationCount":"0","resultStr":"{\"title\":\"LVI-PathNet: Segmentation-classification pipeline for detection of lymphovascular invasion in whole slide images of lung adenocarcinoma\",\"authors\":\"Anna Timakova ,&nbsp;Vladislav Ananev ,&nbsp;Alexey Fayzullin ,&nbsp;Egor Zemnuhov ,&nbsp;Egor Rumyantsev ,&nbsp;Andrey Zharov ,&nbsp;Nicolay Zharkov ,&nbsp;Varvara Zotova ,&nbsp;Elena Shchelokova ,&nbsp;Tatiana Demura ,&nbsp;Peter Timashev ,&nbsp;Vladimir Makarov\",\"doi\":\"10.1016/j.jpi.2024.100395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lymphovascular invasion (LVI) in lung cancer is a significant prognostic factor that influences treatment and outcomes, yet its reliable detection is challenging due to interobserver variability. This study aims to develop a deep learning model for LVI detection using whole slide images (WSIs) and evaluate its effectiveness within a pathologist's information system. Experienced pathologists annotated blood vessels and invading tumor cells in 162 WSIs of non-mucinous lung adenocarcinoma sourced from two external and one internal datasets. Two models were trained to segment vessels and identify images with LVI features. DeepLabV3+ model achieved an Intersection-over-Union of 0.8840 and an area under the receiver operating characteristic curve (AUC-ROC) of 0.9869 in vessel segmentation. For LVI classification, the ensemble model achieved a F1-score of 0.9683 and an AUC-ROC of 0.9987. The model demonstrated robustness and was unaffected by variations in staining and image quality. The pilot study showed that pathologists' evaluation time for LVI detecting decreased by an average of 16.95%, and by 21.5% in “hard cases”. The model facilitated consistent diagnostic assessments, suggesting potential for broader applications in detecting pathological changes in blood vessels and other lung pathologies.</p></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"15 \",\"pages\":\"Article 100395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2153353924000348/pdfft?md5=9a1e9217891b1539c144069b2cb2703f&pid=1-s2.0-S2153353924000348-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353924000348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353924000348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

肺癌中的淋巴管侵犯(LVI)是影响治疗和预后的重要预后因素,但由于观察者之间的差异,其可靠检测具有挑战性。本研究旨在开发一种利用全切片图像(WSI)进行淋巴管侵犯检测的深度学习模型,并评估其在病理学家信息系统中的有效性。经验丰富的病理学家对来自两个外部数据集和一个内部数据集的 162 张非粘液性肺腺癌 WSI 图像中的血管和入侵肿瘤细胞进行了标注。对两个模型进行了训练,以利用 LVI 特征分割血管和识别图像。DeepLabV3+ 模型在血管分割方面取得了 0.8840 的 "联合交叉"(Intersection-over-Union)和 0.9869 的接收者操作特征曲线下面积(AUC-ROC)。在 LVI 分类中,集合模型的 F1 分数为 0.9683,AUC-ROC 为 0.9987。该模型具有鲁棒性,不受染色和图像质量变化的影响。试点研究表明,病理学家检测 LVI 的评估时间平均减少了 16.95%,在 "疑难病例 "中减少了 21.5%。该模型有助于进行一致的诊断评估,表明它在检测血管病理变化和其他肺部病变方面具有更广泛的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LVI-PathNet: Segmentation-classification pipeline for detection of lymphovascular invasion in whole slide images of lung adenocarcinoma

Lymphovascular invasion (LVI) in lung cancer is a significant prognostic factor that influences treatment and outcomes, yet its reliable detection is challenging due to interobserver variability. This study aims to develop a deep learning model for LVI detection using whole slide images (WSIs) and evaluate its effectiveness within a pathologist's information system. Experienced pathologists annotated blood vessels and invading tumor cells in 162 WSIs of non-mucinous lung adenocarcinoma sourced from two external and one internal datasets. Two models were trained to segment vessels and identify images with LVI features. DeepLabV3+ model achieved an Intersection-over-Union of 0.8840 and an area under the receiver operating characteristic curve (AUC-ROC) of 0.9869 in vessel segmentation. For LVI classification, the ensemble model achieved a F1-score of 0.9683 and an AUC-ROC of 0.9987. The model demonstrated robustness and was unaffected by variations in staining and image quality. The pilot study showed that pathologists' evaluation time for LVI detecting decreased by an average of 16.95%, and by 21.5% in “hard cases”. The model facilitated consistent diagnostic assessments, suggesting potential for broader applications in detecting pathological changes in blood vessels and other lung pathologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pathology Informatics
Journal of Pathology Informatics Medicine-Pathology and Forensic Medicine
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
18 weeks
期刊介绍: The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.
期刊最新文献
Improving the generalizability of white blood cell classification with few-shot domain adaptation Pathology Informatics Summit 2024 Abstracts Ann Arbor Marriott at Eagle Crest Resort May 20-23, 2024 Ann Arbor, Michigan Deep learning-based classification of breast cancer molecular subtypes from H&E whole-slide images. Enhancing human phenotype ontology term extraction through synthetic case reports and embedding-based retrieval: A novel approach for improved biomedical data annotation. Prioritizing cases from a multi-institutional cohort for a dataset of pathologist annotations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1