{"title":"反铁磁到铁磁的相变是部分有序自旋的过渡。应用于掺杂范围 x ≥ 0.50 的 La1-xCaxMnO3","authors":"","doi":"10.1016/j.physleta.2024.129904","DOIUrl":null,"url":null,"abstract":"<div><p>Magnetic state is a partial ordered state if only part of the electrons in the system give contribution to the magnetic order. We study Heisenberg model of two sublattice spin system, on the body-centered cubic lattice, with antiferromagnetic nearest neighbors exchange of sublattice A and B spins and two different ferromagnetic exchange constants for sublattice A (<span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msup></math></span>) and B (<span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span>) spins. When <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msup><mo>></mo><msup><mrow><mi>J</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span> the system undergoes transition from paramagnetism to ferromagnetism at Curie temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>. Only the sublattice A spins give contribution to the magnetization of the system. Upon cooling, the system possesses ferromagnetism to antiferromagnetism transition at Néel temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub><mo><</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>. Below <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> sublattice A and B electrons give contribution to the magnetization. The transition is a partial ordered transition. There is thermodynamic evidence for this transition in the magnetic specific heat of the system. As a function of temperature there are two maxima. At high temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> it is <em>λ</em>-type. At lower temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> it characterizes the transition from ferromagnetism to antiferromagnetism. As an example of ferromagnetism to antiferromagnetism partial ordered transition we consider the material <span><math><mi>L</mi><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi>C</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>M</mi><mi>n</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in the doping range <span><math><mi>x</mi><mo>≥</mo><mn>0.50</mn></math></span>. Our calculations reproduce the experimental magnetization-temperature curve.</p></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiferromagnetic to ferromagnetic phase transition as a transition to partial ordered spins. Application to La1−xCaxMnO3 in the doping range x ≥ 0.50\",\"authors\":\"\",\"doi\":\"10.1016/j.physleta.2024.129904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magnetic state is a partial ordered state if only part of the electrons in the system give contribution to the magnetic order. We study Heisenberg model of two sublattice spin system, on the body-centered cubic lattice, with antiferromagnetic nearest neighbors exchange of sublattice A and B spins and two different ferromagnetic exchange constants for sublattice A (<span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msup></math></span>) and B (<span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span>) spins. When <span><math><msup><mrow><mi>J</mi></mrow><mrow><mi>A</mi></mrow></msup><mo>></mo><msup><mrow><mi>J</mi></mrow><mrow><mi>B</mi></mrow></msup></math></span> the system undergoes transition from paramagnetism to ferromagnetism at Curie temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>. Only the sublattice A spins give contribution to the magnetization of the system. Upon cooling, the system possesses ferromagnetism to antiferromagnetism transition at Néel temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub><mo><</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>. Below <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> sublattice A and B electrons give contribution to the magnetization. The transition is a partial ordered transition. There is thermodynamic evidence for this transition in the magnetic specific heat of the system. As a function of temperature there are two maxima. At high temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> it is <em>λ</em>-type. At lower temperature <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>N</mi></mrow></msub></math></span> it characterizes the transition from ferromagnetism to antiferromagnetism. As an example of ferromagnetism to antiferromagnetism partial ordered transition we consider the material <span><math><mi>L</mi><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>x</mi></mrow></msub><mi>C</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>x</mi></mrow></msub><mi>M</mi><mi>n</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> in the doping range <span><math><mi>x</mi><mo>≥</mo><mn>0.50</mn></math></span>. Our calculations reproduce the experimental magnetization-temperature curve.</p></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037596012400598X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037596012400598X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
如果系统中只有部分电子对磁性有序做出贡献,那么磁性状态就是部分有序状态。我们研究了体心立方晶格上两个亚晶格自旋系统的海森堡模型,亚晶格 A 和 B 自旋具有反铁磁近邻交换,亚晶格 A (JA) 和 B (JB) 自旋具有两种不同的铁磁交换常数。当 JA>JB 时,系统在居里温度 TC 下从顺磁性转变为铁磁性。只有子晶格 A 自旋对系统的磁化有贡献。冷却后,该体系在奈尔温度 TN<TC 时发生从铁磁性到反铁磁性的转变。在 TN 温度以下,亚晶格 A 和 B 电子会对磁化做出贡献。这种转变是一种部分有序转变。系统的磁比热为这种转变提供了热力学证据。作为温度的函数,有两个最大值。在高温下,TC 为 λ 型。在较低温度 TN 下,它是铁磁性向反铁磁性转变的特征。作为铁磁性向反铁磁性部分有序转变的一个例子,我们考虑了掺杂范围 x≥0.50 的 La1-xCaxMnO3 材料。我们的计算重现了实验磁化-温度曲线。
Antiferromagnetic to ferromagnetic phase transition as a transition to partial ordered spins. Application to La1−xCaxMnO3 in the doping range x ≥ 0.50
Magnetic state is a partial ordered state if only part of the electrons in the system give contribution to the magnetic order. We study Heisenberg model of two sublattice spin system, on the body-centered cubic lattice, with antiferromagnetic nearest neighbors exchange of sublattice A and B spins and two different ferromagnetic exchange constants for sublattice A () and B () spins. When the system undergoes transition from paramagnetism to ferromagnetism at Curie temperature . Only the sublattice A spins give contribution to the magnetization of the system. Upon cooling, the system possesses ferromagnetism to antiferromagnetism transition at Néel temperature . Below sublattice A and B electrons give contribution to the magnetization. The transition is a partial ordered transition. There is thermodynamic evidence for this transition in the magnetic specific heat of the system. As a function of temperature there are two maxima. At high temperature it is λ-type. At lower temperature it characterizes the transition from ferromagnetism to antiferromagnetism. As an example of ferromagnetism to antiferromagnetism partial ordered transition we consider the material in the doping range . Our calculations reproduce the experimental magnetization-temperature curve.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.