通过杠杆放大实现轻质准零刚度隔振器的方法

IF 4.3 2区 工程技术 Q1 ACOUSTICS Journal of Sound and Vibration Pub Date : 2024-09-14 DOI:10.1016/j.jsv.2024.118740
{"title":"通过杠杆放大实现轻质准零刚度隔振器的方法","authors":"","doi":"10.1016/j.jsv.2024.118740","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-zero stiffness (QZS) vibration isolators exhibit excellent performance in low-frequency vibration isolation but require the negative stiffness to be consistent or close to the positive stiffness, which may lead to an excessively large volume or weight of the negative stiffness mechanism. In this paper, a lightweight QZS (L-QZS) vibration isolator using the lever amplification mechanism is developed, theoretically investigated, and experimentally verified. The negative stiffness can be amplified by one order of magnitude through the amplification effect of the lever structure, enabling a lower negative stiffness to compensate for the positive stiffness. Meanwhile, the lever increases the inertia effect of the negative stiffness structure, leading to an increase in the system’s effective mass and further reducing the resonance frequency. Results indicate that with a small negative stiffness, the isolation bandwidth of L-QZS isolators is significantly enlarged. The transmissibility at high frequencies of the L-QZS isolator tends to a certain value, which is mainly determined by the lever ratio and the tip mass of the lever. Furthermore, the negative stiffness can be controlled by adjusting the lever ratio, providing a viable method for matching various positive stiffnesses in engineering applications.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approach for realizing lightweight quasi-zero stiffness isolators via lever amplification\",\"authors\":\"\",\"doi\":\"10.1016/j.jsv.2024.118740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quasi-zero stiffness (QZS) vibration isolators exhibit excellent performance in low-frequency vibration isolation but require the negative stiffness to be consistent or close to the positive stiffness, which may lead to an excessively large volume or weight of the negative stiffness mechanism. In this paper, a lightweight QZS (L-QZS) vibration isolator using the lever amplification mechanism is developed, theoretically investigated, and experimentally verified. The negative stiffness can be amplified by one order of magnitude through the amplification effect of the lever structure, enabling a lower negative stiffness to compensate for the positive stiffness. Meanwhile, the lever increases the inertia effect of the negative stiffness structure, leading to an increase in the system’s effective mass and further reducing the resonance frequency. Results indicate that with a small negative stiffness, the isolation bandwidth of L-QZS isolators is significantly enlarged. The transmissibility at high frequencies of the L-QZS isolator tends to a certain value, which is mainly determined by the lever ratio and the tip mass of the lever. Furthermore, the negative stiffness can be controlled by adjusting the lever ratio, providing a viable method for matching various positive stiffnesses in engineering applications.</p></div>\",\"PeriodicalId\":17233,\"journal\":{\"name\":\"Journal of Sound and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sound and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022460X24005029\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24005029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

准零刚度(QZS)隔振器在低频隔振方面表现出色,但要求负刚度与正刚度一致或接近,这可能导致负刚度机构的体积或重量过大。本文开发了一种使用杠杆放大机制的轻型 QZS(L-QZS)隔振器,并对其进行了理论研究和实验验证。通过杠杆结构的放大效应,负刚度可放大一个数量级,从而以较低的负刚度补偿正刚度。同时,杠杆增加了负刚度结构的惯性效应,从而增加了系统的有效质量,进一步降低了共振频率。结果表明,在负刚度较小的情况下,L-QZS 隔振器的隔振带宽明显增大。L-QZS 隔振器在高频率下的可传递性趋于一定值,这主要取决于杠杆比和杠杆顶端质量。此外,负刚度可以通过调整杠杆比来控制,这为工程应用中各种正刚度的匹配提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An approach for realizing lightweight quasi-zero stiffness isolators via lever amplification

Quasi-zero stiffness (QZS) vibration isolators exhibit excellent performance in low-frequency vibration isolation but require the negative stiffness to be consistent or close to the positive stiffness, which may lead to an excessively large volume or weight of the negative stiffness mechanism. In this paper, a lightweight QZS (L-QZS) vibration isolator using the lever amplification mechanism is developed, theoretically investigated, and experimentally verified. The negative stiffness can be amplified by one order of magnitude through the amplification effect of the lever structure, enabling a lower negative stiffness to compensate for the positive stiffness. Meanwhile, the lever increases the inertia effect of the negative stiffness structure, leading to an increase in the system’s effective mass and further reducing the resonance frequency. Results indicate that with a small negative stiffness, the isolation bandwidth of L-QZS isolators is significantly enlarged. The transmissibility at high frequencies of the L-QZS isolator tends to a certain value, which is mainly determined by the lever ratio and the tip mass of the lever. Furthermore, the negative stiffness can be controlled by adjusting the lever ratio, providing a viable method for matching various positive stiffnesses in engineering applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
期刊最新文献
A new contact force model for revolute joints considering elastic layer characteristics effects Robustness evaluation of acceleration-based early rub detection methodologies with real fluid-induced noise Extraction and characteristic analysis of the nonlinear acoustic impedance of circular orifice in the presence of bias flow A vibro-impact remote-controlled capsule in millimeter scale: Design, modeling, experimental validation and dynamic response Atypical second harmonic A0 mode Lamb waves in non-uniform plates for local incipient damage monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1