比较兴趣点数据和土地利用数据在盗窃犯罪建模中的有效性:北京案例研究

IF 6 1区 社会学 Q1 ENVIRONMENTAL STUDIES Land Use Policy Pub Date : 2024-09-17 DOI:10.1016/j.landusepol.2024.107357
Jiajia Feng , Yuebing Liang , Qi Hao , Ke Xu , Waishan Qiu
{"title":"比较兴趣点数据和土地利用数据在盗窃犯罪建模中的有效性:北京案例研究","authors":"Jiajia Feng ,&nbsp;Yuebing Liang ,&nbsp;Qi Hao ,&nbsp;Ke Xu ,&nbsp;Waishan Qiu","doi":"10.1016/j.landusepol.2024.107357","DOIUrl":null,"url":null,"abstract":"<div><p>To promote the healthy development of cities, previous studies have long investigated the relationships between urban functions and crime. However, the use of either land use data or point of interest (POI) data to represent urban functions can yield inconsistent findings, potentially misguiding urban planners in crime prevention efforts. To address this issue, we systematically compare the effectiveness of land use and POI data in theft crime modeling with a case study of Beijing, China. Urban function features are constructed from both data sources by three measures, i.e., density, fraction, and diversity. Their global strengths are evaluated through negative binomial regression (NBR). Additionally, geographically weighted negative binomial regression (GWNBR) is employed to uncover their local strengths. Results indicate that POI data generally outperform land use data, with POI densities being the most effective. Nevertheless, optimal data sources and measures vary for urban functions and spatial context. Land use fractions could effectively capture large-scale functional areas, while POI fractions and POI densities are fit for small-scale facilities with distinct properties. This study advocates the complementary use of land use and POI data, offering valuable insights for urban planners and researchers to construct precise urban function indicators for crime modeling.</p></div>","PeriodicalId":17933,"journal":{"name":"Land Use Policy","volume":"147 ","pages":"Article 107357"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing effectiveness of point of interest data and land use data in theft crime modelling: A case study in Beijing\",\"authors\":\"Jiajia Feng ,&nbsp;Yuebing Liang ,&nbsp;Qi Hao ,&nbsp;Ke Xu ,&nbsp;Waishan Qiu\",\"doi\":\"10.1016/j.landusepol.2024.107357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To promote the healthy development of cities, previous studies have long investigated the relationships between urban functions and crime. However, the use of either land use data or point of interest (POI) data to represent urban functions can yield inconsistent findings, potentially misguiding urban planners in crime prevention efforts. To address this issue, we systematically compare the effectiveness of land use and POI data in theft crime modeling with a case study of Beijing, China. Urban function features are constructed from both data sources by three measures, i.e., density, fraction, and diversity. Their global strengths are evaluated through negative binomial regression (NBR). Additionally, geographically weighted negative binomial regression (GWNBR) is employed to uncover their local strengths. Results indicate that POI data generally outperform land use data, with POI densities being the most effective. Nevertheless, optimal data sources and measures vary for urban functions and spatial context. Land use fractions could effectively capture large-scale functional areas, while POI fractions and POI densities are fit for small-scale facilities with distinct properties. This study advocates the complementary use of land use and POI data, offering valuable insights for urban planners and researchers to construct precise urban function indicators for crime modeling.</p></div>\",\"PeriodicalId\":17933,\"journal\":{\"name\":\"Land Use Policy\",\"volume\":\"147 \",\"pages\":\"Article 107357\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Land Use Policy\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264837724003107\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Use Policy","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264837724003107","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

为了促进城市的健康发展,以往的研究长期以来一直在调查城市功能与犯罪之间的关系。然而,使用土地利用数据或兴趣点(POI)数据表示城市功能可能会产生不一致的结论,从而可能误导城市规划者的犯罪预防工作。为了解决这个问题,我们以中国北京为例,系统地比较了土地利用数据和兴趣点数据在盗窃犯罪建模中的有效性。我们从这两种数据源中构建了三种城市功能特征,即密度、分数和多样性。通过负二叉回归(NBR)评估了这些特征的整体优势。此外,还采用了地理加权负二项回归(GWNBR)来揭示它们的局部优势。结果表明,POI 数据普遍优于土地利用数据,其中 POI 密度最为有效。然而,最佳数据源和衡量标准因城市功能和空间环境而异。土地利用分数可以有效捕捉大规模功能区,而 POI 分数和 POI 密度则适合具有独特属性的小规模设施。本研究提倡土地利用和 POI 数据的互补使用,为城市规划者和研究人员构建精确的犯罪模型城市功能指标提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing effectiveness of point of interest data and land use data in theft crime modelling: A case study in Beijing

To promote the healthy development of cities, previous studies have long investigated the relationships between urban functions and crime. However, the use of either land use data or point of interest (POI) data to represent urban functions can yield inconsistent findings, potentially misguiding urban planners in crime prevention efforts. To address this issue, we systematically compare the effectiveness of land use and POI data in theft crime modeling with a case study of Beijing, China. Urban function features are constructed from both data sources by three measures, i.e., density, fraction, and diversity. Their global strengths are evaluated through negative binomial regression (NBR). Additionally, geographically weighted negative binomial regression (GWNBR) is employed to uncover their local strengths. Results indicate that POI data generally outperform land use data, with POI densities being the most effective. Nevertheless, optimal data sources and measures vary for urban functions and spatial context. Land use fractions could effectively capture large-scale functional areas, while POI fractions and POI densities are fit for small-scale facilities with distinct properties. This study advocates the complementary use of land use and POI data, offering valuable insights for urban planners and researchers to construct precise urban function indicators for crime modeling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Land Use Policy
Land Use Policy ENVIRONMENTAL STUDIES-
CiteScore
13.70
自引率
8.50%
发文量
553
期刊介绍: Land Use Policy is an international and interdisciplinary journal concerned with the social, economic, political, legal, physical and planning aspects of urban and rural land use. Land Use Policy examines issues in geography, agriculture, forestry, irrigation, environmental conservation, housing, urban development and transport in both developed and developing countries through major refereed articles and shorter viewpoint pieces.
期刊最新文献
The engagement of environmental organizations on land policies: A case study of Pro Natura, Switzerland Multi-scenario simulation of low-carbon land use based on the SD-FLUS model in Changsha, China The smart city competitiveness index (SMCI): Conceptualization, modelling, application – An evidence-based insight Can urban low-carbon transformation affect the prices of its industrial land? An empirical study based on spatial regression discontinuity Quantifying supply and demand of cultural ecosystem services from a dynamic perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1