使用量化感知高斯过程回归的通信高效 ADMM

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE EURO Journal on Computational Optimization Pub Date : 2024-01-01 DOI:10.1016/j.ejco.2024.100098
Aldo Duarte , Truong X. Nghiem , Shuangqing Wei
{"title":"使用量化感知高斯过程回归的通信高效 ADMM","authors":"Aldo Duarte ,&nbsp;Truong X. Nghiem ,&nbsp;Shuangqing Wei","doi":"10.1016/j.ejco.2024.100098","DOIUrl":null,"url":null,"abstract":"<div><p>In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization problem in a distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a setting often requires a decomposition method to solve the global distributed problem, resulting in extensive communication overhead. In networks where communication is expensive, it is crucial to reduce the communication overhead of the distributed optimization scheme. Gaussian processes (GPs) are effective at learning the agents' local proximal operators, thereby reducing the communication between the agents and the coordinator. We propose combining this learning method with adaptive uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, due to data quantization, the GP algorithm is modified to account for the introduced quantization noise statistics. We further improve our approach by introducing an orthogonalization process to the quantizer's input to address the inherent correlation of the input components. We also use dithering to ensure uncorrelation between the quantizer's introduced noise and its input. We propose multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution's accuracy/optimality. Under such metrics, our proposed algorithms can achieve significant communication reduction for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is demonstrated by simulations of a distributed sharing problem with quadratic cost functions for the agents.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100098"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440624000157/pdfft?md5=8fd7b21c89e782f11b9739c488b6329b&pid=1-s2.0-S2192440624000157-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Communication-efficient ADMM using quantization-aware Gaussian process regression\",\"authors\":\"Aldo Duarte ,&nbsp;Truong X. Nghiem ,&nbsp;Shuangqing Wei\",\"doi\":\"10.1016/j.ejco.2024.100098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization problem in a distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a setting often requires a decomposition method to solve the global distributed problem, resulting in extensive communication overhead. In networks where communication is expensive, it is crucial to reduce the communication overhead of the distributed optimization scheme. Gaussian processes (GPs) are effective at learning the agents' local proximal operators, thereby reducing the communication between the agents and the coordinator. We propose combining this learning method with adaptive uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, due to data quantization, the GP algorithm is modified to account for the introduced quantization noise statistics. We further improve our approach by introducing an orthogonalization process to the quantizer's input to address the inherent correlation of the input components. We also use dithering to ensure uncorrelation between the quantizer's introduced noise and its input. We propose multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution's accuracy/optimality. Under such metrics, our proposed algorithms can achieve significant communication reduction for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is demonstrated by simulations of a distributed sharing problem with quadratic cost functions for the agents.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"12 \",\"pages\":\"Article 100098\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440624000157/pdfft?md5=8fd7b21c89e782f11b9739c488b6329b&pid=1-s2.0-S2192440624000157-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440624000157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440624000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在由代理组成的网络中,代理与中央协调者进行通信,并以分布式方式共同解决全局优化问题,代理通常需要解决私有的近似最小化子问题。在这种情况下,通常需要采用分解方法来解决全局分布式问题,从而造成大量通信开销。在通信费用昂贵的网络中,减少分布式优化方案的通信开销至关重要。高斯过程(GPs)能有效地学习代理的局部近算子,从而减少代理与协调器之间的通信。我们建议将这种学习方法与自适应均匀量化相结合,形成一种混合方法,从而进一步减少通信开销。在我们的方法中,由于数据的量化,GP 算法被修改以考虑引入的量化噪声统计。我们对量化器的输入引入了正交化过程,以解决输入成分的固有相关性,从而进一步改进了我们的方法。我们还使用抖动来确保量化器引入的噪声与其输入之间不存在相关性。我们提出了多种衡量标准,以量化降低通信成本与优化解决方案准确性/最优性之间的权衡。根据这些衡量标准,我们提出的算法即使在量化分辨率较低的情况下,也能显著降低分布式优化的通信成本,并获得可接受的精度。这一结果通过模拟一个代理具有二次成本函数的分布式共享问题得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Communication-efficient ADMM using quantization-aware Gaussian process regression

In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization problem in a distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a setting often requires a decomposition method to solve the global distributed problem, resulting in extensive communication overhead. In networks where communication is expensive, it is crucial to reduce the communication overhead of the distributed optimization scheme. Gaussian processes (GPs) are effective at learning the agents' local proximal operators, thereby reducing the communication between the agents and the coordinator. We propose combining this learning method with adaptive uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, due to data quantization, the GP algorithm is modified to account for the introduced quantization noise statistics. We further improve our approach by introducing an orthogonalization process to the quantizer's input to address the inherent correlation of the input components. We also use dithering to ensure uncorrelation between the quantizer's introduced noise and its input. We propose multiple measures to quantify the trade-off between the communication cost reduction and the optimization solution's accuracy/optimality. Under such metrics, our proposed algorithms can achieve significant communication reduction for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is demonstrated by simulations of a distributed sharing problem with quadratic cost functions for the agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
期刊最新文献
Unboxing Tree ensembles for interpretability: A hierarchical visualization tool and a multivariate optimal re-built tree An effective hybrid decomposition approach to solve the network-constrained stochastic unit commitment problem in large-scale power systems Advances in nonlinear optimization and equilibrium problems – Special issue editorial The Marguerite Frank Award for the best EJCO paper 2023 A variable metric proximal stochastic gradient method: An application to classification problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1