基于脑电图的对不同曝光标志的伪装目标的神经反应

IF 2 3区 心理学 Q3 BEHAVIORAL SCIENCES Neuropsychologia Pub Date : 2024-09-16 DOI:10.1016/j.neuropsychologia.2024.109002
{"title":"基于脑电图的对不同曝光标志的伪装目标的神经反应","authors":"","doi":"10.1016/j.neuropsychologia.2024.109002","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the relationship between various target exposure signs and brain activation patterns by analyzing the EEG signals of 35 subjects observing four types of targets: well-camouflaged, with large color differences, with shadows, and of large size. Through ERP analysis and source localization, we have established that different exposure signs elicit distinct brain activation patterns. The ERP analysis revealed a strong correlation between the latency of the P300 component and the visibility of the exposure signs. Furthermore, our source localization findings indicate that exposure signs alter the current density distribution within the cortex, with shadows causing significantly higher activation in the frontal lobe compared to other conditions. The study also uncovered a pronounced right-brain laterality in subjects during target identification. By employing an LSTM neural network, we successfully differentiated EEG signals triggered by various exposure signs, achieving a classification accuracy of up to 96.4%. These results not only suggest that analyzing the P300 latency and cortical current distribution can differentiate the degree of visibility of target exposure signs, but also demonstrate the potential of using EEG characteristics to identify key exposure signs in camouflaged targets. This provides crucial insights for developing auxiliary camouflage strategies.</p></div>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural responses to camouflage targets with different exposure signs based on EEG\",\"authors\":\"\",\"doi\":\"10.1016/j.neuropsychologia.2024.109002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the relationship between various target exposure signs and brain activation patterns by analyzing the EEG signals of 35 subjects observing four types of targets: well-camouflaged, with large color differences, with shadows, and of large size. Through ERP analysis and source localization, we have established that different exposure signs elicit distinct brain activation patterns. The ERP analysis revealed a strong correlation between the latency of the P300 component and the visibility of the exposure signs. Furthermore, our source localization findings indicate that exposure signs alter the current density distribution within the cortex, with shadows causing significantly higher activation in the frontal lobe compared to other conditions. The study also uncovered a pronounced right-brain laterality in subjects during target identification. By employing an LSTM neural network, we successfully differentiated EEG signals triggered by various exposure signs, achieving a classification accuracy of up to 96.4%. These results not only suggest that analyzing the P300 latency and cortical current distribution can differentiate the degree of visibility of target exposure signs, but also demonstrate the potential of using EEG characteristics to identify key exposure signs in camouflaged targets. This provides crucial insights for developing auxiliary camouflage strategies.</p></div>\",\"PeriodicalId\":19279,\"journal\":{\"name\":\"Neuropsychologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychologia\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028393224002173\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028393224002173","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过分析 35 名受试者在观察伪装良好、色差较大、有阴影和体积较大四种类型目标时的脑电信号,研究了各种目标暴露标志与大脑激活模式之间的关系。通过ERP分析和信号源定位,我们确定了不同的暴露标志会引起不同的大脑激活模式。ERP分析显示,P300分量的潜伏期与曝光标志的可见度之间存在很强的相关性。此外,我们的源定位研究结果表明,曝光标志改变了大脑皮层内的电流密度分布,与其他条件相比,阴影导致额叶的激活明显更高。研究还发现,受试者在目标识别过程中存在明显的右脑侧向性。通过使用 LSTM 神经网络,我们成功地区分了由各种曝光迹象引发的脑电信号,分类准确率高达 96.4%。这些结果不仅表明,分析 P300 潜伏期和皮层电流分布可以区分目标暴露标志的可见度,还证明了利用脑电图特征识别伪装目标中关键暴露标志的潜力。这为开发辅助伪装策略提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural responses to camouflage targets with different exposure signs based on EEG

This study investigates the relationship between various target exposure signs and brain activation patterns by analyzing the EEG signals of 35 subjects observing four types of targets: well-camouflaged, with large color differences, with shadows, and of large size. Through ERP analysis and source localization, we have established that different exposure signs elicit distinct brain activation patterns. The ERP analysis revealed a strong correlation between the latency of the P300 component and the visibility of the exposure signs. Furthermore, our source localization findings indicate that exposure signs alter the current density distribution within the cortex, with shadows causing significantly higher activation in the frontal lobe compared to other conditions. The study also uncovered a pronounced right-brain laterality in subjects during target identification. By employing an LSTM neural network, we successfully differentiated EEG signals triggered by various exposure signs, achieving a classification accuracy of up to 96.4%. These results not only suggest that analyzing the P300 latency and cortical current distribution can differentiate the degree of visibility of target exposure signs, but also demonstrate the potential of using EEG characteristics to identify key exposure signs in camouflaged targets. This provides crucial insights for developing auxiliary camouflage strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropsychologia
Neuropsychologia 医学-行为科学
CiteScore
5.10
自引率
3.80%
发文量
228
审稿时长
4 months
期刊介绍: Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.
期刊最新文献
On the lasting impact of mild traumatic brain injury on working memory: Behavioural and electrophysiological evidence Functional connectivity of sensorimotor network before and after surgery in the supplementary motor area Neural responses to camouflage targets with different exposure signs based on EEG Joyful growth vs. compulsive hedonism: A meta-analysis of brain activation on romantic love and addictive disorders Using imagination and the contents of memory to create new scene and object representations: A functional MRI study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1