Xue Li , Tian Ye , Yaohan Du , Min Zhan , Xiangyu Wang , Yajun Dai , Yongjie Liu , Chong Wang , Kun Yang , Chao He , Qingyuan Wang
{"title":"微观结构对超级马氏体不锈钢中细小疲劳裂纹萌生和早期扩展行为的影响","authors":"Xue Li , Tian Ye , Yaohan Du , Min Zhan , Xiangyu Wang , Yajun Dai , Yongjie Liu , Chong Wang , Kun Yang , Chao He , Qingyuan Wang","doi":"10.1016/j.ijfatigue.2024.108604","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to investigate the influence mechanism of martensite multi-scale interfaces on the fatigue small cracks propagation behavior in super martensite stainless steel. The findings revealed that crack propagation slows during the transition from early to steady stages. Multiscale martensite interfaces can cause varying degrees of crack deflection, and cracks tend to propagate along-boundaries during the early propagation stage. Martensite lath is the basic unit that affects the fatigue performance and the behavior of small crack propagation.</p></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"190 ","pages":"Article 108604"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of microstructure on small fatigue crack initiation and early propagation behavior in super martensite stainless steel\",\"authors\":\"Xue Li , Tian Ye , Yaohan Du , Min Zhan , Xiangyu Wang , Yajun Dai , Yongjie Liu , Chong Wang , Kun Yang , Chao He , Qingyuan Wang\",\"doi\":\"10.1016/j.ijfatigue.2024.108604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this study is to investigate the influence mechanism of martensite multi-scale interfaces on the fatigue small cracks propagation behavior in super martensite stainless steel. The findings revealed that crack propagation slows during the transition from early to steady stages. Multiscale martensite interfaces can cause varying degrees of crack deflection, and cracks tend to propagate along-boundaries during the early propagation stage. Martensite lath is the basic unit that affects the fatigue performance and the behavior of small crack propagation.</p></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"190 \",\"pages\":\"Article 108604\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324004638\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324004638","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of microstructure on small fatigue crack initiation and early propagation behavior in super martensite stainless steel
The objective of this study is to investigate the influence mechanism of martensite multi-scale interfaces on the fatigue small cracks propagation behavior in super martensite stainless steel. The findings revealed that crack propagation slows during the transition from early to steady stages. Multiscale martensite interfaces can cause varying degrees of crack deflection, and cracks tend to propagate along-boundaries during the early propagation stage. Martensite lath is the basic unit that affects the fatigue performance and the behavior of small crack propagation.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.