智能机器的人机协同控制--混合控制建议

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Industrial Information Integration Pub Date : 2024-09-12 DOI:10.1016/j.jii.2024.100684
Hussein Bilal, Zhuming Bi, Nashwan Younis, Hosni Abu-Mulaweh
{"title":"智能机器的人机协同控制--混合控制建议","authors":"Hussein Bilal,&nbsp;Zhuming Bi,&nbsp;Nashwan Younis,&nbsp;Hosni Abu-Mulaweh","doi":"10.1016/j.jii.2024.100684","DOIUrl":null,"url":null,"abstract":"<div><p>Human-Machine Interaction (HMI) and Brain-Computer Interface (BCI) are evolving technologies that show the great potentials to extract and utilize humans’ intents in controlling smart machines. However, existing HMI and BCI technologies are limited in terms of (1) the number of Degrees- of-Freedom (DoF) to be controlled and (2) the ways the performance of BCI-enabled control systems are verified and validated. This study aimed to explore the solutions to addree both of above concerns; we proposed a hybrid control system that is capable of training, detecting, and interpreting humans’ intents, and utilizing humans’ intents in real-time controls of smart machines. More specifically, the system acquired brain signals in the form of Electroencephalography (EEG) by an Emotiv Epoc X and processed these signals to detect and extract humans’ intents in real-time machine controls. To cope with the frequency difference of humans’ thinking and machine motion controls, we developed a hybrid control module to fuse humans’ and machine's intelligence so that low-frequency humans’ intents could be used in real-time machine controls. The system was prototyped and verified experimentally. The system was verified to achieve the accuracy of over 90 % in recognizing humans’ intents and controlling a robot by the operator's intents with a satisfactory responding time and accuracy.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"42 ","pages":"Article 100684"},"PeriodicalIF":10.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative human and computer controls of smart machines – A proposed hybrid control\",\"authors\":\"Hussein Bilal,&nbsp;Zhuming Bi,&nbsp;Nashwan Younis,&nbsp;Hosni Abu-Mulaweh\",\"doi\":\"10.1016/j.jii.2024.100684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human-Machine Interaction (HMI) and Brain-Computer Interface (BCI) are evolving technologies that show the great potentials to extract and utilize humans’ intents in controlling smart machines. However, existing HMI and BCI technologies are limited in terms of (1) the number of Degrees- of-Freedom (DoF) to be controlled and (2) the ways the performance of BCI-enabled control systems are verified and validated. This study aimed to explore the solutions to addree both of above concerns; we proposed a hybrid control system that is capable of training, detecting, and interpreting humans’ intents, and utilizing humans’ intents in real-time controls of smart machines. More specifically, the system acquired brain signals in the form of Electroencephalography (EEG) by an Emotiv Epoc X and processed these signals to detect and extract humans’ intents in real-time machine controls. To cope with the frequency difference of humans’ thinking and machine motion controls, we developed a hybrid control module to fuse humans’ and machine's intelligence so that low-frequency humans’ intents could be used in real-time machine controls. The system was prototyped and verified experimentally. The system was verified to achieve the accuracy of over 90 % in recognizing humans’ intents and controlling a robot by the operator's intents with a satisfactory responding time and accuracy.</p></div>\",\"PeriodicalId\":55975,\"journal\":{\"name\":\"Journal of Industrial Information Integration\",\"volume\":\"42 \",\"pages\":\"Article 100684\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Information Integration\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452414X24001274\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001274","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

人机交互(HMI)和脑机接口(BCI)是不断发展的技术,在提取和利用人类意图控制智能机器方面显示出巨大潜力。然而,现有的人机交互(HMI)和脑机接口(BCI)技术在以下方面受到限制:(1)可控制的自由度(DoF)数量;(2)验证和确认脑机接口控制系统性能的方法。本研究旨在探索解决上述两个问题的方法;我们提出了一种混合控制系统,该系统能够训练、检测和解释人类意图,并在智能机器的实时控制中利用人类意图。更具体地说,该系统通过 Emotiv Epoc X 获取脑电图(EEG)形式的大脑信号,并对这些信号进行处理,从而在实时机器控制中检测和提取人类意图。为了应对人类思维和机器运动控制的频率差异,我们开发了一个混合控制模块,以融合人类和机器的智能,从而在实时机器控制中使用低频人类意图。我们对该系统进行了原型设计和实验验证。经过验证,该系统对人类意图的识别准确率超过 90%,并能根据操作员的意图控制机器人,而且响应时间和准确率都令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Collaborative human and computer controls of smart machines – A proposed hybrid control

Human-Machine Interaction (HMI) and Brain-Computer Interface (BCI) are evolving technologies that show the great potentials to extract and utilize humans’ intents in controlling smart machines. However, existing HMI and BCI technologies are limited in terms of (1) the number of Degrees- of-Freedom (DoF) to be controlled and (2) the ways the performance of BCI-enabled control systems are verified and validated. This study aimed to explore the solutions to addree both of above concerns; we proposed a hybrid control system that is capable of training, detecting, and interpreting humans’ intents, and utilizing humans’ intents in real-time controls of smart machines. More specifically, the system acquired brain signals in the form of Electroencephalography (EEG) by an Emotiv Epoc X and processed these signals to detect and extract humans’ intents in real-time machine controls. To cope with the frequency difference of humans’ thinking and machine motion controls, we developed a hybrid control module to fuse humans’ and machine's intelligence so that low-frequency humans’ intents could be used in real-time machine controls. The system was prototyped and verified experimentally. The system was verified to achieve the accuracy of over 90 % in recognizing humans’ intents and controlling a robot by the operator's intents with a satisfactory responding time and accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
期刊最新文献
Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor An effective farmer-centred mobile intelligence solution using lightweight deep learning for integrated wheat pest management TRIPLE: A blockchain-based digital twin framework for cyber–physical systems security Industrial information integration in deep space exploration and exploitation: Architecture and technology Interoperability levels and challenges of digital twins in cyber–physical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1