Chenyang Chen, Ruihuan Wu, Yuxin Chen, Hongzhan Liu
{"title":"基于自旋复用元面的圆形对称艾里涡旋束的生成","authors":"Chenyang Chen, Ruihuan Wu, Yuxin Chen, Hongzhan Liu","doi":"10.1016/j.ijleo.2024.172021","DOIUrl":null,"url":null,"abstract":"<div><p>Given that circular symmetric Airy vortex beam (CSAVB) was found to possess a stable central cavity and an opposing transport process to circular Airy vortex beam, it has been recognized as a potentially powerful tool for particle trapping and optical communication. In order to facilitate broader application scenarios, this paper presents a novel approach to the generation of multiple CASVBs based on a single metasurface. In the proposed method, three independent CSAVBs carrying different new kinds of power-exponent-phase vortices (NPEPVs) can be obtained under two orthogonal circularly polarized or an arbitrary linear polarized incident, respectively. Each of these vortex structures is characterized by a distinct orbital angular momentum, which is jointly determined by two parameters of the NPEPVs. This indicates that the CSAVB and the device have greater freedom than the canonical optical vortex beams and the previous vortex beam generators in controlling the optical vortex. These results have the potential to advance the development of vortex beams and enhance their applications in micromanipulation, optical communication and imaging.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"315 ","pages":"Article 172021"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of circular symmetric Airy vortex beams based on spin-multiplexed metasurface\",\"authors\":\"Chenyang Chen, Ruihuan Wu, Yuxin Chen, Hongzhan Liu\",\"doi\":\"10.1016/j.ijleo.2024.172021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given that circular symmetric Airy vortex beam (CSAVB) was found to possess a stable central cavity and an opposing transport process to circular Airy vortex beam, it has been recognized as a potentially powerful tool for particle trapping and optical communication. In order to facilitate broader application scenarios, this paper presents a novel approach to the generation of multiple CASVBs based on a single metasurface. In the proposed method, three independent CSAVBs carrying different new kinds of power-exponent-phase vortices (NPEPVs) can be obtained under two orthogonal circularly polarized or an arbitrary linear polarized incident, respectively. Each of these vortex structures is characterized by a distinct orbital angular momentum, which is jointly determined by two parameters of the NPEPVs. This indicates that the CSAVB and the device have greater freedom than the canonical optical vortex beams and the previous vortex beam generators in controlling the optical vortex. These results have the potential to advance the development of vortex beams and enhance their applications in micromanipulation, optical communication and imaging.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"315 \",\"pages\":\"Article 172021\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004200\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004200","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Generation of circular symmetric Airy vortex beams based on spin-multiplexed metasurface
Given that circular symmetric Airy vortex beam (CSAVB) was found to possess a stable central cavity and an opposing transport process to circular Airy vortex beam, it has been recognized as a potentially powerful tool for particle trapping and optical communication. In order to facilitate broader application scenarios, this paper presents a novel approach to the generation of multiple CASVBs based on a single metasurface. In the proposed method, three independent CSAVBs carrying different new kinds of power-exponent-phase vortices (NPEPVs) can be obtained under two orthogonal circularly polarized or an arbitrary linear polarized incident, respectively. Each of these vortex structures is characterized by a distinct orbital angular momentum, which is jointly determined by two parameters of the NPEPVs. This indicates that the CSAVB and the device have greater freedom than the canonical optical vortex beams and the previous vortex beam generators in controlling the optical vortex. These results have the potential to advance the development of vortex beams and enhance their applications in micromanipulation, optical communication and imaging.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.