Cheng-Wei Sun , Ting-Zhu Huang , Hong-Xia Dou , Ting Xu , Liang-Jian Deng
{"title":"基于 Lanczos 的张量环分解分层快速算法","authors":"Cheng-Wei Sun , Ting-Zhu Huang , Hong-Xia Dou , Ting Xu , Liang-Jian Deng","doi":"10.1016/j.sigpro.2024.109705","DOIUrl":null,"url":null,"abstract":"<div><p>Tensor ring (TR) decomposition has made remarkable achievements in numerous high-order data processing tasks. However, the current alternating least squares (ALS)- and singular value decomposition (SVD)-based algorithms for TR decomposition, i.e., TR-ALS and TR-SVD, especially the former, are computationally expensive, making them unfriendly for large-scale data processing. This paper adopts three strategies to propose a novel fast TR decomposition algorithm: (1) Use a more efficient Lanczos bidiagonalization algorithm than SVD to generate the TR core tensors. (2) Exploit the hierarchical strategy to generate the TR core tensors in parallel. (3) Employ new reshaping and unfolding operations to reduce the dimensionality of the data used to generate TR core tensors. By incorporating these three strategies, we propose the TR-HLanczos algorithm for fast TR decomposition. This algorithm seamlessly produces the TR core tensors through the Lanczos bidiagonalization algorithm in a hierarchical manner. The effectiveness of the proposed TR-HLanczos algorithm is demonstrated through experimental results on both highly oscillatory functions and real-world datasets. For instance, when dealing with data of size <span><math><mrow><mn>5</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, TR-HLanczos is nearly 561 times and 18 times faster than algorithms based on ALS and SVD, respectively.</p></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109705"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast Lanczos-based hierarchical algorithm for tensor ring decomposition\",\"authors\":\"Cheng-Wei Sun , Ting-Zhu Huang , Hong-Xia Dou , Ting Xu , Liang-Jian Deng\",\"doi\":\"10.1016/j.sigpro.2024.109705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tensor ring (TR) decomposition has made remarkable achievements in numerous high-order data processing tasks. However, the current alternating least squares (ALS)- and singular value decomposition (SVD)-based algorithms for TR decomposition, i.e., TR-ALS and TR-SVD, especially the former, are computationally expensive, making them unfriendly for large-scale data processing. This paper adopts three strategies to propose a novel fast TR decomposition algorithm: (1) Use a more efficient Lanczos bidiagonalization algorithm than SVD to generate the TR core tensors. (2) Exploit the hierarchical strategy to generate the TR core tensors in parallel. (3) Employ new reshaping and unfolding operations to reduce the dimensionality of the data used to generate TR core tensors. By incorporating these three strategies, we propose the TR-HLanczos algorithm for fast TR decomposition. This algorithm seamlessly produces the TR core tensors through the Lanczos bidiagonalization algorithm in a hierarchical manner. The effectiveness of the proposed TR-HLanczos algorithm is demonstrated through experimental results on both highly oscillatory functions and real-world datasets. For instance, when dealing with data of size <span><math><mrow><mn>5</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span>, TR-HLanczos is nearly 561 times and 18 times faster than algorithms based on ALS and SVD, respectively.</p></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109705\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003256\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003256","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A fast Lanczos-based hierarchical algorithm for tensor ring decomposition
Tensor ring (TR) decomposition has made remarkable achievements in numerous high-order data processing tasks. However, the current alternating least squares (ALS)- and singular value decomposition (SVD)-based algorithms for TR decomposition, i.e., TR-ALS and TR-SVD, especially the former, are computationally expensive, making them unfriendly for large-scale data processing. This paper adopts three strategies to propose a novel fast TR decomposition algorithm: (1) Use a more efficient Lanczos bidiagonalization algorithm than SVD to generate the TR core tensors. (2) Exploit the hierarchical strategy to generate the TR core tensors in parallel. (3) Employ new reshaping and unfolding operations to reduce the dimensionality of the data used to generate TR core tensors. By incorporating these three strategies, we propose the TR-HLanczos algorithm for fast TR decomposition. This algorithm seamlessly produces the TR core tensors through the Lanczos bidiagonalization algorithm in a hierarchical manner. The effectiveness of the proposed TR-HLanczos algorithm is demonstrated through experimental results on both highly oscillatory functions and real-world datasets. For instance, when dealing with data of size , TR-HLanczos is nearly 561 times and 18 times faster than algorithms based on ALS and SVD, respectively.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.