{"title":"抗性的分子机制和抗硬皮病植物育种战略的未来展望","authors":"Hu Duo , Meng Yin , Rui Wang","doi":"10.1016/j.ncrops.2024.100046","DOIUrl":null,"url":null,"abstract":"<div><p><em>Sclerotinia sclerotiorum</em> is one of the most destructive and widespread phytopathogenic ascomycetes, causing significant yield and economic losses. Numerous studies have explored its virulence, plant recognition, and prolonged interactions with host defense systems. However, the key genes involved in these processes and their potential application in future breeding for <em>S. sclerotiorum</em> resistance remain insufficiently explored. Recent advances have significantly deepened our understanding of the molecular mechanisms underlying the interaction between <em>S. sclerotiorum</em> and plants, providing novel insights into the pathogen's mechanism and identifying key candidate genes for enhancing plant resistance. In this review, we summarize current knowledge on <em>S. sclerotiorum</em> pathogenesis, challenges in breeding for resistance, genetic improvement strategies for combating <em>Sclerotinia</em> stem rot, and recent genome sequencing data related to <em>S. sclerotiorum</em> resistance. Our aim is to propose a comprehensive strategy for plant molecular breeding against <em>S. sclerotiorum</em>, leveraging newly developed tools for genetic improvement.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000360/pdfft?md5=4b84c19e92f605ddb1881dfba3b57993&pid=1-s2.0-S2949952624000360-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms of resistance and future perspectives in plant breeding strategies against Sclerotinia sclerotiorum\",\"authors\":\"Hu Duo , Meng Yin , Rui Wang\",\"doi\":\"10.1016/j.ncrops.2024.100046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Sclerotinia sclerotiorum</em> is one of the most destructive and widespread phytopathogenic ascomycetes, causing significant yield and economic losses. Numerous studies have explored its virulence, plant recognition, and prolonged interactions with host defense systems. However, the key genes involved in these processes and their potential application in future breeding for <em>S. sclerotiorum</em> resistance remain insufficiently explored. Recent advances have significantly deepened our understanding of the molecular mechanisms underlying the interaction between <em>S. sclerotiorum</em> and plants, providing novel insights into the pathogen's mechanism and identifying key candidate genes for enhancing plant resistance. In this review, we summarize current knowledge on <em>S. sclerotiorum</em> pathogenesis, challenges in breeding for resistance, genetic improvement strategies for combating <em>Sclerotinia</em> stem rot, and recent genome sequencing data related to <em>S. sclerotiorum</em> resistance. Our aim is to propose a comprehensive strategy for plant molecular breeding against <em>S. sclerotiorum</em>, leveraging newly developed tools for genetic improvement.</p></div>\",\"PeriodicalId\":100953,\"journal\":{\"name\":\"New Crops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000360/pdfft?md5=4b84c19e92f605ddb1881dfba3b57993&pid=1-s2.0-S2949952624000360-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949952624000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Sclerotinia sclerotiorum 是最具破坏性、分布最广的植物病原菌之一,会造成重大的产量和经济损失。许多研究都对其毒力、植物识别以及与宿主防御系统的长期相互作用进行了探讨。然而,对参与这些过程的关键基因及其在未来培育 S. sclerotiorum 抗性中的潜在应用仍未进行充分探索。最近的研究进展大大加深了我们对 S. sclerotiorum 与植物之间相互作用的分子机制的理解,为我们提供了对病原体机制的新见解,并确定了增强植物抗性的关键候选基因。在这篇综述中,我们总结了当前有关硬核菌致病机理的知识、抗性育种面临的挑战、抗击硬核菌茎腐病的遗传改良策略以及与硬核菌抗性相关的最新基因组测序数据。我们的目标是利用新开发的遗传改良工具,提出针对 Sclerotiorum 的植物分子育种综合战略。
Molecular mechanisms of resistance and future perspectives in plant breeding strategies against Sclerotinia sclerotiorum
Sclerotinia sclerotiorum is one of the most destructive and widespread phytopathogenic ascomycetes, causing significant yield and economic losses. Numerous studies have explored its virulence, plant recognition, and prolonged interactions with host defense systems. However, the key genes involved in these processes and their potential application in future breeding for S. sclerotiorum resistance remain insufficiently explored. Recent advances have significantly deepened our understanding of the molecular mechanisms underlying the interaction between S. sclerotiorum and plants, providing novel insights into the pathogen's mechanism and identifying key candidate genes for enhancing plant resistance. In this review, we summarize current knowledge on S. sclerotiorum pathogenesis, challenges in breeding for resistance, genetic improvement strategies for combating Sclerotinia stem rot, and recent genome sequencing data related to S. sclerotiorum resistance. Our aim is to propose a comprehensive strategy for plant molecular breeding against S. sclerotiorum, leveraging newly developed tools for genetic improvement.