{"title":"基于模糊成员函数实现有效的 SVM 样本缩减","authors":"Tinghua Wang, Daili Zhang, Hanming Liu","doi":"10.1016/j.chemolab.2024.105233","DOIUrl":null,"url":null,"abstract":"<div><p>Support vector machine (SVM) is known for its good generalization performance and wide application in various fields. Despite its success, the learning efficiency of SVM decreases significantly originating from the assumption that the number of training samples increases rapidly. Consequently, the traditional SVM with standard optimization methods faces challenges such as excessive memory requirements and slow training speed, especially for large-scale training sets. To address this issue, this paper draws inspiration from the fuzzy support vector machine (FSVM). Considering that each sample has varying contributions to the decision plane, we propose an effective SVM sample reduction method based on the fuzzy membership function (FMF). This method uses FMF to calculate the fuzzy membership of each training sample. Training samples with low fuzzy memberships are then deleted. Specifically, we propose SVM sample reduction algorithms based on class center distance, kernel target alignment, centered kernel alignment, slack factor, entropy, and bilateral weighted FMF, respectively. Comprehensive experiments on UCI and KEEL datasets demonstrate that our proposed algorithms outperform other comparative methods in terms of accuracy, F-measure, and hinge-loss measures.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"254 ","pages":"Article 105233"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward effective SVM sample reduction based on fuzzy membership functions\",\"authors\":\"Tinghua Wang, Daili Zhang, Hanming Liu\",\"doi\":\"10.1016/j.chemolab.2024.105233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Support vector machine (SVM) is known for its good generalization performance and wide application in various fields. Despite its success, the learning efficiency of SVM decreases significantly originating from the assumption that the number of training samples increases rapidly. Consequently, the traditional SVM with standard optimization methods faces challenges such as excessive memory requirements and slow training speed, especially for large-scale training sets. To address this issue, this paper draws inspiration from the fuzzy support vector machine (FSVM). Considering that each sample has varying contributions to the decision plane, we propose an effective SVM sample reduction method based on the fuzzy membership function (FMF). This method uses FMF to calculate the fuzzy membership of each training sample. Training samples with low fuzzy memberships are then deleted. Specifically, we propose SVM sample reduction algorithms based on class center distance, kernel target alignment, centered kernel alignment, slack factor, entropy, and bilateral weighted FMF, respectively. Comprehensive experiments on UCI and KEEL datasets demonstrate that our proposed algorithms outperform other comparative methods in terms of accuracy, F-measure, and hinge-loss measures.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"254 \",\"pages\":\"Article 105233\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169743924001734\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743924001734","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Toward effective SVM sample reduction based on fuzzy membership functions
Support vector machine (SVM) is known for its good generalization performance and wide application in various fields. Despite its success, the learning efficiency of SVM decreases significantly originating from the assumption that the number of training samples increases rapidly. Consequently, the traditional SVM with standard optimization methods faces challenges such as excessive memory requirements and slow training speed, especially for large-scale training sets. To address this issue, this paper draws inspiration from the fuzzy support vector machine (FSVM). Considering that each sample has varying contributions to the decision plane, we propose an effective SVM sample reduction method based on the fuzzy membership function (FMF). This method uses FMF to calculate the fuzzy membership of each training sample. Training samples with low fuzzy memberships are then deleted. Specifically, we propose SVM sample reduction algorithms based on class center distance, kernel target alignment, centered kernel alignment, slack factor, entropy, and bilateral weighted FMF, respectively. Comprehensive experiments on UCI and KEEL datasets demonstrate that our proposed algorithms outperform other comparative methods in terms of accuracy, F-measure, and hinge-loss measures.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.