利用双记忆学习实现稳健视觉跟踪的时空关系转换器

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Soft Computing Pub Date : 2024-09-10 DOI:10.1016/j.asoc.2024.112229
{"title":"利用双记忆学习实现稳健视觉跟踪的时空关系转换器","authors":"","doi":"10.1016/j.asoc.2024.112229","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, transformer trackers mostly associate multiple reference images with the search area to adapt to the changing appearance of the target. However, they ignore the learned cross-relations between the target and surrounding, leading to difficulties in building coherent contextual models for specific target instances. This paper presents a Temporal Relation Transformer Tracker (TRTT) for robust visual tracking, providing a concise approach to modeling temporal relations by dual target memory learning. Specifically, a temporal relation transformer network generates paired memories based on static and dynamic templates, which are reinforced interactively. The memory contains implicit relation hints that capture the relations between the tracked object and its immediate surroundings. More importantly, to ensure consistency of target instance identities between frames, the relation hints from previous frames are transferred to the current frame for merging temporal contextual attention. Our method also incorporates mechanisms for reusing favorable cross-relations and instance-specific features, thereby overcoming background interference in complex spatio-temporal interactions through a sequential constraint. Furthermore, we design a memory token sparsification method that leverages the key points of the target to eliminate interferences and optimize attention calculations. Extensive experiments demonstrate that our method surpasses advanced trackers on 8 challenging benchmarks while maintaining real-time running speed.</p></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal relation transformer for robust visual tracking with dual-memory learning\",\"authors\":\"\",\"doi\":\"10.1016/j.asoc.2024.112229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, transformer trackers mostly associate multiple reference images with the search area to adapt to the changing appearance of the target. However, they ignore the learned cross-relations between the target and surrounding, leading to difficulties in building coherent contextual models for specific target instances. This paper presents a Temporal Relation Transformer Tracker (TRTT) for robust visual tracking, providing a concise approach to modeling temporal relations by dual target memory learning. Specifically, a temporal relation transformer network generates paired memories based on static and dynamic templates, which are reinforced interactively. The memory contains implicit relation hints that capture the relations between the tracked object and its immediate surroundings. More importantly, to ensure consistency of target instance identities between frames, the relation hints from previous frames are transferred to the current frame for merging temporal contextual attention. Our method also incorporates mechanisms for reusing favorable cross-relations and instance-specific features, thereby overcoming background interference in complex spatio-temporal interactions through a sequential constraint. Furthermore, we design a memory token sparsification method that leverages the key points of the target to eliminate interferences and optimize attention calculations. Extensive experiments demonstrate that our method surpasses advanced trackers on 8 challenging benchmarks while maintaining real-time running speed.</p></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494624010032\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494624010032","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,变换跟踪器大多将多个参考图像与搜索区域关联起来,以适应目标不断变化的外观。然而,它们忽略了目标与周围环境之间的交叉关系,导致难以为特定目标实例建立连贯的上下文模型。本文提出了一种用于稳健视觉跟踪的时空关系变换跟踪器(TRTT),通过双目标记忆学习为时空关系建模提供了一种简洁的方法。具体来说,时空关系转换器网络根据静态和动态模板生成配对记忆,并以交互方式对其进行强化。该记忆包含隐式关系提示,可捕捉被跟踪物体与其周围环境之间的关系。更重要的是,为了确保不同帧之间目标实例身份的一致性,以前帧中的关系提示会被转移到当前帧中,以合并时间上下文注意力。我们的方法还包含重用有利交叉关系和特定实例特征的机制,从而通过顺序约束克服复杂时空交互中的背景干扰。此外,我们还设计了一种记忆标记稀疏化方法,利用目标的关键点消除干扰,优化注意力计算。大量实验证明,我们的方法在 8 个具有挑战性的基准测试中超越了先进的跟踪器,同时保持了实时运行速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal relation transformer for robust visual tracking with dual-memory learning

Recently, transformer trackers mostly associate multiple reference images with the search area to adapt to the changing appearance of the target. However, they ignore the learned cross-relations between the target and surrounding, leading to difficulties in building coherent contextual models for specific target instances. This paper presents a Temporal Relation Transformer Tracker (TRTT) for robust visual tracking, providing a concise approach to modeling temporal relations by dual target memory learning. Specifically, a temporal relation transformer network generates paired memories based on static and dynamic templates, which are reinforced interactively. The memory contains implicit relation hints that capture the relations between the tracked object and its immediate surroundings. More importantly, to ensure consistency of target instance identities between frames, the relation hints from previous frames are transferred to the current frame for merging temporal contextual attention. Our method also incorporates mechanisms for reusing favorable cross-relations and instance-specific features, thereby overcoming background interference in complex spatio-temporal interactions through a sequential constraint. Furthermore, we design a memory token sparsification method that leverages the key points of the target to eliminate interferences and optimize attention calculations. Extensive experiments demonstrate that our method surpasses advanced trackers on 8 challenging benchmarks while maintaining real-time running speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
期刊最新文献
An effective surrogate-assisted rank method for evolutionary neural architecture search Knowledge graph-driven mountain railway alignment optimization integrating karst hazard assessment Medical image segmentation network based on feature filtering with low number of parameters Robust Chinese Clinical Named Entity Recognition with information bottleneck and adversarial training Clustering based fuzzy classification with a noise cluster in detecting fraud in insurance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1