物质存量动态综合图揭示中国长江三角洲日益协调的城市发展

IF 11.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Resources Conservation and Recycling Pub Date : 2024-09-19 DOI:10.1016/j.resconrec.2024.107925
{"title":"物质存量动态综合图揭示中国长江三角洲日益协调的城市发展","authors":"","doi":"10.1016/j.resconrec.2024.107925","DOIUrl":null,"url":null,"abstract":"<div><p>Sustainable urban development critically depends on effectively managing the interplay between material stock (MS) and economic growth. This study combined convolutional neural network model and nighttime lights data to map building MS of Yangtze River Delta (YRD) urban agglomeration in China from 2000 to 2020 across 1 km × 1 km pixel scale, then uncovered the spatiotemporal dynamics of MS and its correlation with economic development. Our findings indicate that the model performed robustly on the test set (<em>R</em><sup>2</sup> &gt; 0.88). YRD's MS surged over tenfold, reaching 20,772 teragram, primarily expanding along northwest-southeast developmental axes. Most YRD cities exhibited synchronized growth in material stock and GDP, suggesting an emergent pattern of sustainable urban expansion. However, cities at the developmental extremes highlighted the need for optimizing urban development strategies. By categorizing YRD cities into four distinct development modes, our study offers deep insights into the dynamics of urban development, underpinning targeted strategies that could guide cities towards more sustainable and resource-efficient growth trajectories.</p></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive maps of material stock dynamics reveal increasingly coordinated urban development in the Yangtze River Delta of China\",\"authors\":\"\",\"doi\":\"10.1016/j.resconrec.2024.107925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sustainable urban development critically depends on effectively managing the interplay between material stock (MS) and economic growth. This study combined convolutional neural network model and nighttime lights data to map building MS of Yangtze River Delta (YRD) urban agglomeration in China from 2000 to 2020 across 1 km × 1 km pixel scale, then uncovered the spatiotemporal dynamics of MS and its correlation with economic development. Our findings indicate that the model performed robustly on the test set (<em>R</em><sup>2</sup> &gt; 0.88). YRD's MS surged over tenfold, reaching 20,772 teragram, primarily expanding along northwest-southeast developmental axes. Most YRD cities exhibited synchronized growth in material stock and GDP, suggesting an emergent pattern of sustainable urban expansion. However, cities at the developmental extremes highlighted the need for optimizing urban development strategies. By categorizing YRD cities into four distinct development modes, our study offers deep insights into the dynamics of urban development, underpinning targeted strategies that could guide cities towards more sustainable and resource-efficient growth trajectories.</p></div>\",\"PeriodicalId\":21153,\"journal\":{\"name\":\"Resources Conservation and Recycling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Conservation and Recycling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921344924005184\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005184","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

城市的可持续发展关键在于有效管理物质存量(MS)与经济增长之间的相互作用。本研究将卷积神经网络模型与夜间灯光数据相结合,绘制了 2000 年至 2020 年中国长三角城市群 1 km × 1 km 像素尺度的建筑物质存量图,进而揭示了物质存量的时空动态及其与经济发展的相关性。研究结果表明,该模型在测试集上表现稳健(R2 > 0.88)。长三角的 MS 激增了十多倍,达到 20772 teragram,主要沿着西北-东南发展轴扩张。大多数长三角城市的物质存量和 GDP 呈现出同步增长的态势,显示出一种可持续的城市扩张模式。然而,处于发展极端的城市凸显了优化城市发展战略的必要性。通过将长三角城市划分为四种不同的发展模式,我们的研究提供了对城市发展动态的深刻见解,为有针对性的战略提供了基础,这些战略可以引导城市迈向更具可持续性和资源效率的增长轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive maps of material stock dynamics reveal increasingly coordinated urban development in the Yangtze River Delta of China

Sustainable urban development critically depends on effectively managing the interplay between material stock (MS) and economic growth. This study combined convolutional neural network model and nighttime lights data to map building MS of Yangtze River Delta (YRD) urban agglomeration in China from 2000 to 2020 across 1 km × 1 km pixel scale, then uncovered the spatiotemporal dynamics of MS and its correlation with economic development. Our findings indicate that the model performed robustly on the test set (R2 > 0.88). YRD's MS surged over tenfold, reaching 20,772 teragram, primarily expanding along northwest-southeast developmental axes. Most YRD cities exhibited synchronized growth in material stock and GDP, suggesting an emergent pattern of sustainable urban expansion. However, cities at the developmental extremes highlighted the need for optimizing urban development strategies. By categorizing YRD cities into four distinct development modes, our study offers deep insights into the dynamics of urban development, underpinning targeted strategies that could guide cities towards more sustainable and resource-efficient growth trajectories.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Resources Conservation and Recycling
Resources Conservation and Recycling 环境科学-工程:环境
CiteScore
22.90
自引率
6.10%
发文量
625
审稿时长
23 days
期刊介绍: The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns. Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.
期刊最新文献
Unlocking sustainable lithium: A comparative life cycle assessment of innovative extraction methods from brine Packaging the future: Determinants of use intentions and incentive structures of reusable packaging systems Sustainable electroless nutrient recovery from natural agro-industrial and livestock farm wastewater effluents with a flow cell reactor Evaluation of sustainable waste management: An analysis of techno-economic and life cycle assessments of municipal solid waste sorting and decontamination Mining the atmosphere: A concrete solution to global warming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1