Li LI , Yu-tong CHEN , Lei-xin YUAN , Fen LUO , Zhi-xue FENG , Xiao-qiang LI
{"title":"钎焊温度对使用微纳 Ti-Cu-Ni-Nb-Al-Hf 填料真空钎焊的 γ-TiAl 接头微观结构和拉伸强度的影响","authors":"Li LI , Yu-tong CHEN , Lei-xin YUAN , Fen LUO , Zhi-xue FENG , Xiao-qiang LI","doi":"10.1016/S1003-6326(24)66560-X","DOIUrl":null,"url":null,"abstract":"<div><p>A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al− 2Nb−2Cr−0.15B alloy at 1160−1220 °C for 30 min. The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature, interfacial microstructure and joint strength were emphatically investigated. Results show that the TiAl joints brazed at 1160 and 1180 °C possess three interfacial layers and mainly consist of <em>α</em><sub>2</sub>-Ti<sub>3</sub>Al, <em>τ</em><sub>3</sub>-Al<sub>3</sub>NiTi<sub>2</sub> and Ti<sub>2</sub>Ni, but the brazing seams are no longer layered and Ti<sub>2</sub>Ni is completely replaced by the uniformly distributed <em>τ</em><sub>3</sub>-Al<sub>3</sub>NiTi<sub>2</sub> at 1200 and 1220 °C due to the destruction of <em>α</em><sub>2</sub>-Ti<sub>3</sub>Al barrier layer. This transformation at 1200 °C obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa. Notably, the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 8","pages":"Pages 2563-2574"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100363262466560X/pdf?md5=72a0ee726f1c6d250937105439b85faf&pid=1-s2.0-S100363262466560X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of brazing temperature on microstructure and tensile strength of γ-TiAl joint vacuum brazed with micro-nano Ti−Cu−Ni−Nb−Al−Hf filler\",\"authors\":\"Li LI , Yu-tong CHEN , Lei-xin YUAN , Fen LUO , Zhi-xue FENG , Xiao-qiang LI\",\"doi\":\"10.1016/S1003-6326(24)66560-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al− 2Nb−2Cr−0.15B alloy at 1160−1220 °C for 30 min. The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature, interfacial microstructure and joint strength were emphatically investigated. Results show that the TiAl joints brazed at 1160 and 1180 °C possess three interfacial layers and mainly consist of <em>α</em><sub>2</sub>-Ti<sub>3</sub>Al, <em>τ</em><sub>3</sub>-Al<sub>3</sub>NiTi<sub>2</sub> and Ti<sub>2</sub>Ni, but the brazing seams are no longer layered and Ti<sub>2</sub>Ni is completely replaced by the uniformly distributed <em>τ</em><sub>3</sub>-Al<sub>3</sub>NiTi<sub>2</sub> at 1200 and 1220 °C due to the destruction of <em>α</em><sub>2</sub>-Ti<sub>3</sub>Al barrier layer. This transformation at 1200 °C obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa. Notably, the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures.</p></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":\"34 8\",\"pages\":\"Pages 2563-2574\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100363262466560X/pdf?md5=72a0ee726f1c6d250937105439b85faf&pid=1-s2.0-S100363262466560X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100363262466560X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100363262466560X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of brazing temperature on microstructure and tensile strength of γ-TiAl joint vacuum brazed with micro-nano Ti−Cu−Ni−Nb−Al−Hf filler
A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al− 2Nb−2Cr−0.15B alloy at 1160−1220 °C for 30 min. The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature, interfacial microstructure and joint strength were emphatically investigated. Results show that the TiAl joints brazed at 1160 and 1180 °C possess three interfacial layers and mainly consist of α2-Ti3Al, τ3-Al3NiTi2 and Ti2Ni, but the brazing seams are no longer layered and Ti2Ni is completely replaced by the uniformly distributed τ3-Al3NiTi2 at 1200 and 1220 °C due to the destruction of α2-Ti3Al barrier layer. This transformation at 1200 °C obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa. Notably, the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.