Dong-qiang GAO , Fu-ying WU , Zhi ZHANG , Zi-chuan LU , Ren ZHOU , Hu ZHAO , Liu-ting ZHANG
{"title":"石墨烯负载的镍钒双金属氧化物作为氢泵提升氢化镁的固态储氢动力学性能","authors":"Dong-qiang GAO , Fu-ying WU , Zhi ZHANG , Zi-chuan LU , Ren ZHOU , Hu ZHAO , Liu-ting ZHANG","doi":"10.1016/S1003-6326(24)66566-0","DOIUrl":null,"url":null,"abstract":"<div><p>To modify the thermodynamics and kinetic performance of magnesium hydride (MgH<sub>2</sub>) for solid-state hydrogen storage, Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO (rGO represents reduced graphene oxide) and Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub> nanocomposites were prepared by hydrothermal and subsequent heat treatment. The beginning hydrogen desorption temperature of 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO modified MgH<sub>2</sub> was reduced to 208 °C, while the additive-free MgH<sub>2</sub> and 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub> doped MgH<sub>2</sub> appeared to discharge hydrogen at 340 and 226 °C, respectively. A charging capacity of about 4.7 wt.% H<sub>2</sub> for MgH<sub>2</sub> + 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO was achieved at 125 °C in 10 min, while the dehydrogenated MgH<sub>2</sub> took 60 min to absorb only 4.6 wt.% H<sub>2</sub> at 215 °C. The microstructure analysis confirmed that the in-situ generated Mg<sub>2</sub>Ni/Mg<sub>2</sub>NiH<sub>4</sub> and metallic V contributed significantly to the enhanced performance of MgH<sub>2</sub>. In addition, the presence of rGO in the MgH<sub>2</sub> + 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO composite reduced particle aggregation tendency of Mg/MgH<sub>2</sub>, leading to improving the cyclic stability of MgH<sub>2</sub> during 20 cycles.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 8","pages":"Pages 2645-2657"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665660/pdf?md5=1c96ea8f5c740ea7606957d560c16de7&pid=1-s2.0-S1003632624665660-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Graphene-loaded nickel−vanadium bimetal oxides as hydrogen pumps to boost solid-state hydrogen storage kinetic performance of magnesium hydride\",\"authors\":\"Dong-qiang GAO , Fu-ying WU , Zhi ZHANG , Zi-chuan LU , Ren ZHOU , Hu ZHAO , Liu-ting ZHANG\",\"doi\":\"10.1016/S1003-6326(24)66566-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To modify the thermodynamics and kinetic performance of magnesium hydride (MgH<sub>2</sub>) for solid-state hydrogen storage, Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO (rGO represents reduced graphene oxide) and Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub> nanocomposites were prepared by hydrothermal and subsequent heat treatment. The beginning hydrogen desorption temperature of 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO modified MgH<sub>2</sub> was reduced to 208 °C, while the additive-free MgH<sub>2</sub> and 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub> doped MgH<sub>2</sub> appeared to discharge hydrogen at 340 and 226 °C, respectively. A charging capacity of about 4.7 wt.% H<sub>2</sub> for MgH<sub>2</sub> + 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO was achieved at 125 °C in 10 min, while the dehydrogenated MgH<sub>2</sub> took 60 min to absorb only 4.6 wt.% H<sub>2</sub> at 215 °C. The microstructure analysis confirmed that the in-situ generated Mg<sub>2</sub>Ni/Mg<sub>2</sub>NiH<sub>4</sub> and metallic V contributed significantly to the enhanced performance of MgH<sub>2</sub>. In addition, the presence of rGO in the MgH<sub>2</sub> + 7 wt.% Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>-rGO composite reduced particle aggregation tendency of Mg/MgH<sub>2</sub>, leading to improving the cyclic stability of MgH<sub>2</sub> during 20 cycles.</p></div>\",\"PeriodicalId\":23191,\"journal\":{\"name\":\"Transactions of Nonferrous Metals Society of China\",\"volume\":\"34 8\",\"pages\":\"Pages 2645-2657\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1003632624665660/pdf?md5=1c96ea8f5c740ea7606957d560c16de7&pid=1-s2.0-S1003632624665660-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of Nonferrous Metals Society of China\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1003632624665660\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665660","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Graphene-loaded nickel−vanadium bimetal oxides as hydrogen pumps to boost solid-state hydrogen storage kinetic performance of magnesium hydride
To modify the thermodynamics and kinetic performance of magnesium hydride (MgH2) for solid-state hydrogen storage, Ni3V2O8-rGO (rGO represents reduced graphene oxide) and Ni3V2O8 nanocomposites were prepared by hydrothermal and subsequent heat treatment. The beginning hydrogen desorption temperature of 7 wt.% Ni3V2O8-rGO modified MgH2 was reduced to 208 °C, while the additive-free MgH2 and 7 wt.% Ni3V2O8 doped MgH2 appeared to discharge hydrogen at 340 and 226 °C, respectively. A charging capacity of about 4.7 wt.% H2 for MgH2 + 7 wt.% Ni3V2O8-rGO was achieved at 125 °C in 10 min, while the dehydrogenated MgH2 took 60 min to absorb only 4.6 wt.% H2 at 215 °C. The microstructure analysis confirmed that the in-situ generated Mg2Ni/Mg2NiH4 and metallic V contributed significantly to the enhanced performance of MgH2. In addition, the presence of rGO in the MgH2 + 7 wt.% Ni3V2O8-rGO composite reduced particle aggregation tendency of Mg/MgH2, leading to improving the cyclic stability of MgH2 during 20 cycles.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.