{"title":"定制结构和磁性能:通过溶胶-凝胶自燃烧实现镉⁺和铜⁺共掺杂镍锌铁氧体纳米粒子","authors":"D. Parajuli , N. Murali","doi":"10.1016/j.sajce.2024.08.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this research work, we have incorporated paramagnetic Cu<sup>2+</sup> and diamagnetic Cd<sup>2+</sup> cations in spinel ferrites. By adjusting the concentrations of Cu<sup>2+</sup> and Cd<sup>2+</sup>, it is possible to achieve a balance between enhanced electrical conductivity, desired magnetic properties, and suitable structural characteristics for applications in high-frequency devices, magnetic sensors, and electromagnetic interference (EMI) suppression through a synergistic effect. The sol-gel auto-combustion method was employed to synthesize Cd²⁺ and Cu²⁺ co-doped Ni<sub>0.5</sub>Zn<sub>0.5-x-y</sub>Cu<sub>x</sub>Cd<sub>y</sub>Fe<sub>2</sub>O<sub>4</sub> (x = y = 0.0, 0.05, 0.1, 0.15, 0.2) ferrite nanoparticles. Structural, morphological-compositional, functional, and magnetic properties of the nanoparticles were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM-EDS), Fourier-transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM). The XRD results confirmed the single-phase spinel structures with lattice constants increasing with higher dopant concentrations. The average crystallite sizes were found in the range of 38.14 - 42.68 nm and lattice constants in the range of 8.389 - 8.423 Å. Morphological analysis revealed agglomeration, consistent with the stoichiometric proportions during synthesis. There is a decreasing trend in nanograin sizes in the range of 40 to 73 nm with the concentration. FT-IR spectra verified the spinel structures through characteristic absorption bands around 600 cm⁻¹ and 400 cm⁻¹. Magnetic measurements indicated a decrease in saturation magnetization with increasing dopant levels indicating their potential use in electromagnetic wave absorption and magnetic memory devices.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"50 ","pages":"Pages 281-290"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1026918524000982/pdfft?md5=50a2a89697248cbc94f1acecd2f1cc56&pid=1-s2.0-S1026918524000982-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tailoring structural and magnetic properties: Cd²⁺ and Cu²⁺ co-doped Ni-Zn ferrite nanoparticles via sol-gel auto-combustion\",\"authors\":\"D. Parajuli , N. Murali\",\"doi\":\"10.1016/j.sajce.2024.08.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research work, we have incorporated paramagnetic Cu<sup>2+</sup> and diamagnetic Cd<sup>2+</sup> cations in spinel ferrites. By adjusting the concentrations of Cu<sup>2+</sup> and Cd<sup>2+</sup>, it is possible to achieve a balance between enhanced electrical conductivity, desired magnetic properties, and suitable structural characteristics for applications in high-frequency devices, magnetic sensors, and electromagnetic interference (EMI) suppression through a synergistic effect. The sol-gel auto-combustion method was employed to synthesize Cd²⁺ and Cu²⁺ co-doped Ni<sub>0.5</sub>Zn<sub>0.5-x-y</sub>Cu<sub>x</sub>Cd<sub>y</sub>Fe<sub>2</sub>O<sub>4</sub> (x = y = 0.0, 0.05, 0.1, 0.15, 0.2) ferrite nanoparticles. Structural, morphological-compositional, functional, and magnetic properties of the nanoparticles were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM-EDS), Fourier-transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM). The XRD results confirmed the single-phase spinel structures with lattice constants increasing with higher dopant concentrations. The average crystallite sizes were found in the range of 38.14 - 42.68 nm and lattice constants in the range of 8.389 - 8.423 Å. Morphological analysis revealed agglomeration, consistent with the stoichiometric proportions during synthesis. There is a decreasing trend in nanograin sizes in the range of 40 to 73 nm with the concentration. FT-IR spectra verified the spinel structures through characteristic absorption bands around 600 cm⁻¹ and 400 cm⁻¹. Magnetic measurements indicated a decrease in saturation magnetization with increasing dopant levels indicating their potential use in electromagnetic wave absorption and magnetic memory devices.</p></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"50 \",\"pages\":\"Pages 281-290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1026918524000982/pdfft?md5=50a2a89697248cbc94f1acecd2f1cc56&pid=1-s2.0-S1026918524000982-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918524000982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918524000982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Tailoring structural and magnetic properties: Cd²⁺ and Cu²⁺ co-doped Ni-Zn ferrite nanoparticles via sol-gel auto-combustion
In this research work, we have incorporated paramagnetic Cu2+ and diamagnetic Cd2+ cations in spinel ferrites. By adjusting the concentrations of Cu2+ and Cd2+, it is possible to achieve a balance between enhanced electrical conductivity, desired magnetic properties, and suitable structural characteristics for applications in high-frequency devices, magnetic sensors, and electromagnetic interference (EMI) suppression through a synergistic effect. The sol-gel auto-combustion method was employed to synthesize Cd²⁺ and Cu²⁺ co-doped Ni0.5Zn0.5-x-yCuxCdyFe2O4 (x = y = 0.0, 0.05, 0.1, 0.15, 0.2) ferrite nanoparticles. Structural, morphological-compositional, functional, and magnetic properties of the nanoparticles were characterized using X-ray diffraction (XRD), field emission scanning electron microscopy with energy dispersive spectroscopy (FESEM-EDS), Fourier-transform infrared spectroscopy (FT-IR), and vibrating sample magnetometry (VSM). The XRD results confirmed the single-phase spinel structures with lattice constants increasing with higher dopant concentrations. The average crystallite sizes were found in the range of 38.14 - 42.68 nm and lattice constants in the range of 8.389 - 8.423 Å. Morphological analysis revealed agglomeration, consistent with the stoichiometric proportions during synthesis. There is a decreasing trend in nanograin sizes in the range of 40 to 73 nm with the concentration. FT-IR spectra verified the spinel structures through characteristic absorption bands around 600 cm⁻¹ and 400 cm⁻¹. Magnetic measurements indicated a decrease in saturation magnetization with increasing dopant levels indicating their potential use in electromagnetic wave absorption and magnetic memory devices.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.