室温下探测纳米金刚石中氮空位中心的电子基态

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-09-08 DOI:10.1016/j.ijleo.2024.172038
Rahul Dhankhar, Nitesh Singh, Rajesh V. Nair
{"title":"室温下探测纳米金刚石中氮空位中心的电子基态","authors":"Rahul Dhankhar,&nbsp;Nitesh Singh,&nbsp;Rajesh V. Nair","doi":"10.1016/j.ijleo.2024.172038","DOIUrl":null,"url":null,"abstract":"<div><p>The color centers in diamonds are promising candidates in the context of quantum information science, quantum computation, and spin-based quantum sensors due to their spin-dependent optical transitions. The manipulation and optical readout of electronic spin state is measured using a technique known as optically detected magnetic resonance (ODMR). Here, we discuss the indigenous development of ODMR setup to coherently manipulate and precise readout of spin state of nitrogen-vacancy centers (NV) in nanodiamond at room-temperature. The study involves the confocal mapping of an ensemble of NV centers to measure spin state-dependent optical transition by applying an optical excitation and microwave field simultaneously. The spin state control appears as a dip at 2.87 GHz in the measured emission intensity spectra as a function of microwave frequency. An ODMR contrast of 3.4 % is achieved at the NV center emission maximum of 660 nm and an inhomogeneous dephasing time of 0.03 microseconds. We find an inherent small split in the ODMR dip which is induced by local strain in nanodiamonds. The split becomes stronger while applying an external magnetic field, which forms the basis of NV center-based magnetometry. The results are useful for spin-based microwave-optical quantum transducers, quantum sensing, and quantum memory devices.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"315 ","pages":"Article 172038"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the electronic ground state of the nitrogen-vacancy center in nanodiamonds at room temperature\",\"authors\":\"Rahul Dhankhar,&nbsp;Nitesh Singh,&nbsp;Rajesh V. Nair\",\"doi\":\"10.1016/j.ijleo.2024.172038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The color centers in diamonds are promising candidates in the context of quantum information science, quantum computation, and spin-based quantum sensors due to their spin-dependent optical transitions. The manipulation and optical readout of electronic spin state is measured using a technique known as optically detected magnetic resonance (ODMR). Here, we discuss the indigenous development of ODMR setup to coherently manipulate and precise readout of spin state of nitrogen-vacancy centers (NV) in nanodiamond at room-temperature. The study involves the confocal mapping of an ensemble of NV centers to measure spin state-dependent optical transition by applying an optical excitation and microwave field simultaneously. The spin state control appears as a dip at 2.87 GHz in the measured emission intensity spectra as a function of microwave frequency. An ODMR contrast of 3.4 % is achieved at the NV center emission maximum of 660 nm and an inhomogeneous dephasing time of 0.03 microseconds. We find an inherent small split in the ODMR dip which is induced by local strain in nanodiamonds. The split becomes stronger while applying an external magnetic field, which forms the basis of NV center-based magnetometry. The results are useful for spin-based microwave-optical quantum transducers, quantum sensing, and quantum memory devices.</p></div>\",\"PeriodicalId\":19513,\"journal\":{\"name\":\"Optik\",\"volume\":\"315 \",\"pages\":\"Article 172038\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030402624004376\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004376","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

钻石中的色心因其自旋相关的光学转变,在量子信息科学、量子计算和自旋量子传感器领域大有可为。电子自旋态的操纵和光学读出是通过一种称为光学检测磁共振(ODMR)的技术来测量的。在此,我们讨论了本土开发的 ODMR 装置,用于在室温下相干操纵和精确读出纳米金刚石中氮空位中心(NV)的自旋状态。这项研究包括通过同时施加光激发和微波场,对氮空穴中心集合进行共焦映射,以测量与自旋状态相关的光学转变。自旋态控制在测量到的发射光谱强度中表现为 2.87 GHz 处的凹陷,这是微波频率的函数。在 660 纳米的 NV 中心发射最大值和 0.03 微秒的不均匀去相时间内,实现了 3.4 % 的 ODMR 对比度。我们发现,在纳米金刚石的局部应变诱导下,ODMR 凹陷会出现固有的微小分裂。在施加外部磁场时,这种分裂会变得更强,这就形成了基于 NV 中心的磁力测量法的基础。这些结果对基于自旋的微波-光量子传感器、量子传感和量子存储器件非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing the electronic ground state of the nitrogen-vacancy center in nanodiamonds at room temperature

The color centers in diamonds are promising candidates in the context of quantum information science, quantum computation, and spin-based quantum sensors due to their spin-dependent optical transitions. The manipulation and optical readout of electronic spin state is measured using a technique known as optically detected magnetic resonance (ODMR). Here, we discuss the indigenous development of ODMR setup to coherently manipulate and precise readout of spin state of nitrogen-vacancy centers (NV) in nanodiamond at room-temperature. The study involves the confocal mapping of an ensemble of NV centers to measure spin state-dependent optical transition by applying an optical excitation and microwave field simultaneously. The spin state control appears as a dip at 2.87 GHz in the measured emission intensity spectra as a function of microwave frequency. An ODMR contrast of 3.4 % is achieved at the NV center emission maximum of 660 nm and an inhomogeneous dephasing time of 0.03 microseconds. We find an inherent small split in the ODMR dip which is induced by local strain in nanodiamonds. The split becomes stronger while applying an external magnetic field, which forms the basis of NV center-based magnetometry. The results are useful for spin-based microwave-optical quantum transducers, quantum sensing, and quantum memory devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Weak mode locking dynamics in a thulium-doped fiber laser Design of cascaded diffractive optical elements generating different intensity distributions at several operating wavelengths Whispery gallery mode plasmonic biosensor based on intensifying graphene layer Chemometric advances in COD analysis: Overcoming turbidity interference with a Hybrid PLS-ANN approach A closely spaced dual-band dual-sense linear-to-circular polarization converter for X-band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1