{"title":"清洁剂对细胞色素 c 氧化酶活性的刺激","authors":"Irina Smirnova, Fei Wu, Peter Brzezinski","doi":"10.1016/j.bbabio.2024.149509","DOIUrl":null,"url":null,"abstract":"<div><p>Cytochrome <em>c</em> oxidase (Cyt<em>c</em>O) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of Cyt<em>c</em>O to reversibly modulate its activity. However, purification of Cyt<em>c</em>O for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the Cyt<em>c</em>O enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The Cyt<em>c</em>O activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible Cyt<em>c</em>O activity. Possible functional consequences are discussed.</p></div>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 1","pages":"Article 149509"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005272824004791/pdfft?md5=b1e7ca0b37361a04561096943b6c6ddd&pid=1-s2.0-S0005272824004791-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stimulation of cytochrome c oxidase activity by detergents\",\"authors\":\"Irina Smirnova, Fei Wu, Peter Brzezinski\",\"doi\":\"10.1016/j.bbabio.2024.149509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cytochrome <em>c</em> oxidase (Cyt<em>c</em>O) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of Cyt<em>c</em>O to reversibly modulate its activity. However, purification of Cyt<em>c</em>O for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the Cyt<em>c</em>O enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The Cyt<em>c</em>O activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible Cyt<em>c</em>O activity. Possible functional consequences are discussed.</p></div>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\"1866 1\",\"pages\":\"Article 149509\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0005272824004791/pdfft?md5=b1e7ca0b37361a04561096943b6c6ddd&pid=1-s2.0-S0005272824004791-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005272824004791\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004791","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
细胞色素 c 氧化酶(CytcO)是一种整体膜蛋白,可催化与质子吸收和泵有关的氧的四电子还原。两性分子与 CytcO 所谓的 K 质子通路附近的位点结合,可逆地调节其活性。然而,纯化 CytcO 以进行机理研究通常需要使用去垢剂,这可能会干扰这些调控分子的结合。在此,我们研究了在牛心有丝分裂体中加入不同去垢剂后,CytcO 的酶活性以及与质子转移相关的分子内电子转移。加入烷基葡萄糖苷(DDM 和 DM)和类固醇类似物 GDN 后,CytcO 的活性增加。DDM 和 DM 的刺激效果最大,半刺激效果与它们的 CMC 值相关。而 GDN 的刺激作用较小,且发生在浓度高于 CMC 时。动力学分析表明,活性的刺激是由于 K 质子通路附近结合的配体被移除所致,这表明在原生膜中,该位点被占据,从而产生低于最大可能的 CytcO 活性。对可能产生的功能性后果进行了讨论。
Stimulation of cytochrome c oxidase activity by detergents
Cytochrome c oxidase (CytcO) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of CytcO to reversibly modulate its activity. However, purification of CytcO for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the CytcO enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The CytcO activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible CytcO activity. Possible functional consequences are discussed.
期刊介绍:
BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.