结合可达距离的空间聚类均值移动算法

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-09-12 DOI:10.1016/j.ins.2024.121456
{"title":"结合可达距离的空间聚类均值移动算法","authors":"","doi":"10.1016/j.ins.2024.121456","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial clustering is a widely used technique in spatial analysis that groups similar objects together based on their proximity in space. However, traditional clustering algorithms often fail to ensure the accessibility of cluster centers, which limits their validity in practical applications such as facility location problems. To address this issue, this article introduces a novel Mean Shift algorithm that incorporates reachable distance and an iterative mechanism to accurately locate cluster centers. The proposed algorithm initially labels clustering elements with road network coordinates to facilitate the calculation of reachable distance and the cluster center iterative mechanism. Subsequently, the mean shift vector function is modified to employ reachable distance as the measure of geographic reachable similarity. Unlike existing algorithms, our approach allows for cluster centers to be positioned independently of the clustering elements, guaranteeing geographical accessibility. Through simulation experiments, we demonstrate that our proposed algorithm not only outperforms existing methods in terms of solution quality, but also effectively addresses the limitations of disregarding geographical obstacles and unreachable cluster centers.</p></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mean shift algorithm incorporating reachable distance for spatial clustering\",\"authors\":\"\",\"doi\":\"10.1016/j.ins.2024.121456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spatial clustering is a widely used technique in spatial analysis that groups similar objects together based on their proximity in space. However, traditional clustering algorithms often fail to ensure the accessibility of cluster centers, which limits their validity in practical applications such as facility location problems. To address this issue, this article introduces a novel Mean Shift algorithm that incorporates reachable distance and an iterative mechanism to accurately locate cluster centers. The proposed algorithm initially labels clustering elements with road network coordinates to facilitate the calculation of reachable distance and the cluster center iterative mechanism. Subsequently, the mean shift vector function is modified to employ reachable distance as the measure of geographic reachable similarity. Unlike existing algorithms, our approach allows for cluster centers to be positioned independently of the clustering elements, guaranteeing geographical accessibility. Through simulation experiments, we demonstrate that our proposed algorithm not only outperforms existing methods in terms of solution quality, but also effectively addresses the limitations of disregarding geographical obstacles and unreachable cluster centers.</p></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524013707\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524013707","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

空间聚类是一种广泛应用于空间分析的技术,它根据相似对象在空间上的接近程度将其组合在一起。然而,传统的聚类算法往往无法确保聚类中心的可达性,这就限制了其在设施定位问题等实际应用中的有效性。为解决这一问题,本文介绍了一种新颖的平均值移动算法,该算法结合了可达距离和迭代机制来准确定位聚类中心。所提出的算法首先用路网坐标标记聚类元素,以便于计算可达距离和聚类中心迭代机制。随后,对平均移位向量函数进行修改,将可达距离作为地理可达相似性的衡量标准。与现有算法不同,我们的方法允许聚类中心独立于聚类元素进行定位,从而保证了地理可达性。通过模拟实验,我们证明了我们提出的算法不仅在解质量上优于现有方法,而且有效地解决了忽略地理障碍和无法到达聚类中心的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A mean shift algorithm incorporating reachable distance for spatial clustering

Spatial clustering is a widely used technique in spatial analysis that groups similar objects together based on their proximity in space. However, traditional clustering algorithms often fail to ensure the accessibility of cluster centers, which limits their validity in practical applications such as facility location problems. To address this issue, this article introduces a novel Mean Shift algorithm that incorporates reachable distance and an iterative mechanism to accurately locate cluster centers. The proposed algorithm initially labels clustering elements with road network coordinates to facilitate the calculation of reachable distance and the cluster center iterative mechanism. Subsequently, the mean shift vector function is modified to employ reachable distance as the measure of geographic reachable similarity. Unlike existing algorithms, our approach allows for cluster centers to be positioned independently of the clustering elements, guaranteeing geographical accessibility. Through simulation experiments, we demonstrate that our proposed algorithm not only outperforms existing methods in terms of solution quality, but also effectively addresses the limitations of disregarding geographical obstacles and unreachable cluster centers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Wavelet structure-texture-aware super-resolution for pedestrian detection HVASR: Enhancing 360-degree video delivery with viewport-aware super resolution KNEG-CL: Unveiling data patterns using a k-nearest neighbor evolutionary graph for efficient clustering Fréchet and Gateaux gH-differentiability for interval valued functions of multiple variables Detecting fuzzy-rough conditional anomalies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1