Seongmin Lee , Dave Binkley , Robert Feldt , Nicolas Gold , Shin Yoo
{"title":"因果程序依赖性分析","authors":"Seongmin Lee , Dave Binkley , Robert Feldt , Nicolas Gold , Shin Yoo","doi":"10.1016/j.scico.2024.103208","DOIUrl":null,"url":null,"abstract":"<div><p>Discovering how program components affect one another plays a fundamental role in aiding engineers comprehend and maintain a software system. Despite the fact that the degree to which one program component depends upon another can vary in strength, traditional dependence analysis typically ignores such nuance. To account for this nuance in dependence-based analysis, we propose Causal Program Dependence Analysis (CPDA), a framework based on causal inference that captures the degree (or strength) of the dependence between program elements. For a given program, CPDA intervenes in the program execution to observe changes in value at selected points in the source code. It observes the association between program elements by constructing and executing modified versions of a program (requiring only light-weight parsing rather than sophisticated static analysis). CPDA applies causal inference to the observed changes to identify and estimate the strength of the dependence relations between program elements. We explore the advantages of CPDA's quantified dependence by presenting results for several applications. Our further qualitative evaluation demonstrates 1) that observing different levels of dependence facilitates grouping various functional aspects found in a program and 2) how focusing on the relative strength of the dependences for a particular program element provides a detailed context for that element. Furthermore, a case study that applies CPDA to debugging illustrates how it can improve engineer productivity.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"240 ","pages":"Article 103208"},"PeriodicalIF":1.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016764232400131X/pdfft?md5=59869ae58db39102a7aea3d20ab99b35&pid=1-s2.0-S016764232400131X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Causal program dependence analysis\",\"authors\":\"Seongmin Lee , Dave Binkley , Robert Feldt , Nicolas Gold , Shin Yoo\",\"doi\":\"10.1016/j.scico.2024.103208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Discovering how program components affect one another plays a fundamental role in aiding engineers comprehend and maintain a software system. Despite the fact that the degree to which one program component depends upon another can vary in strength, traditional dependence analysis typically ignores such nuance. To account for this nuance in dependence-based analysis, we propose Causal Program Dependence Analysis (CPDA), a framework based on causal inference that captures the degree (or strength) of the dependence between program elements. For a given program, CPDA intervenes in the program execution to observe changes in value at selected points in the source code. It observes the association between program elements by constructing and executing modified versions of a program (requiring only light-weight parsing rather than sophisticated static analysis). CPDA applies causal inference to the observed changes to identify and estimate the strength of the dependence relations between program elements. We explore the advantages of CPDA's quantified dependence by presenting results for several applications. Our further qualitative evaluation demonstrates 1) that observing different levels of dependence facilitates grouping various functional aspects found in a program and 2) how focusing on the relative strength of the dependences for a particular program element provides a detailed context for that element. Furthermore, a case study that applies CPDA to debugging illustrates how it can improve engineer productivity.</p></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"240 \",\"pages\":\"Article 103208\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016764232400131X/pdfft?md5=59869ae58db39102a7aea3d20ab99b35&pid=1-s2.0-S016764232400131X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016764232400131X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016764232400131X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Discovering how program components affect one another plays a fundamental role in aiding engineers comprehend and maintain a software system. Despite the fact that the degree to which one program component depends upon another can vary in strength, traditional dependence analysis typically ignores such nuance. To account for this nuance in dependence-based analysis, we propose Causal Program Dependence Analysis (CPDA), a framework based on causal inference that captures the degree (or strength) of the dependence between program elements. For a given program, CPDA intervenes in the program execution to observe changes in value at selected points in the source code. It observes the association between program elements by constructing and executing modified versions of a program (requiring only light-weight parsing rather than sophisticated static analysis). CPDA applies causal inference to the observed changes to identify and estimate the strength of the dependence relations between program elements. We explore the advantages of CPDA's quantified dependence by presenting results for several applications. Our further qualitative evaluation demonstrates 1) that observing different levels of dependence facilitates grouping various functional aspects found in a program and 2) how focusing on the relative strength of the dependences for a particular program element provides a detailed context for that element. Furthermore, a case study that applies CPDA to debugging illustrates how it can improve engineer productivity.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.