预测手术时间和住院时间的机器学习:关节置换术文献综述

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Medical Informatics Pub Date : 2024-09-15 DOI:10.1016/j.ijmedinf.2024.105631
{"title":"预测手术时间和住院时间的机器学习:关节置换术文献综述","authors":"","doi":"10.1016/j.ijmedinf.2024.105631","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>In recent years, different factors such as population aging have caused escalating demand for hip and knee arthroplasty straining already limited hospitals’ resources. To address this challenge, focus is put on medical and operational efficiency improvements. This includes an increased use of machine learning (ML) to predict duration of surgery (DOS) and length of stay (LOS) for total knee and total hip arthroplasty, which can be utilized for optimizing resource allocation to satisfy medical and operational limitations. This paper explores the development and performance of ML models in predicting DOS and LOS.</p></div><div><h3>Methods</h3><p>A systematic search of publications between 2010–2023 was conducted following PRISMA guidelines. Considering the inclusion and exclusion criteria, 28 out of 722 gathered papers from PubMed, Web of Science, and manual search were included in the study. Descriptive statistics was used to analyze the extracted data regarding data preprocessing, model development, and model performance assessment.</p></div><div><h3>Results</h3><p>Most of the papers work on LOS as a binary variable. Patient’s age was identified as the most frequently used and reported as important variable for predicting DOS and LOS. Investigations also illustrated that within the resulting 28 papers, more than 71% of models reached good to perfect performance based on the area under the receiver operating characteristic curve (AUC), where artificial neural networks and ensemble learning models had the biggest share among the best-performing models.</p></div><div><h3>Conclusion</h3><p>The utilization of ML models is increasing in the literature. The current performance level indicates that ML can potentially turn to powerful tools in predicting DOS and LOS for different purposes. Meanwhile, the literature is not matured yet in reporting real-life application. Future studies can focus on model specification and validation by considering empirical application.</p></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1386505624002946/pdfft?md5=ec2c36dc2c8914f4d48c34b8a7171153&pid=1-s2.0-S1386505624002946-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning for predicting duration of surgery and length of stay: A literature review on joint arthroplasty\",\"authors\":\"\",\"doi\":\"10.1016/j.ijmedinf.2024.105631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>In recent years, different factors such as population aging have caused escalating demand for hip and knee arthroplasty straining already limited hospitals’ resources. To address this challenge, focus is put on medical and operational efficiency improvements. This includes an increased use of machine learning (ML) to predict duration of surgery (DOS) and length of stay (LOS) for total knee and total hip arthroplasty, which can be utilized for optimizing resource allocation to satisfy medical and operational limitations. This paper explores the development and performance of ML models in predicting DOS and LOS.</p></div><div><h3>Methods</h3><p>A systematic search of publications between 2010–2023 was conducted following PRISMA guidelines. Considering the inclusion and exclusion criteria, 28 out of 722 gathered papers from PubMed, Web of Science, and manual search were included in the study. Descriptive statistics was used to analyze the extracted data regarding data preprocessing, model development, and model performance assessment.</p></div><div><h3>Results</h3><p>Most of the papers work on LOS as a binary variable. Patient’s age was identified as the most frequently used and reported as important variable for predicting DOS and LOS. Investigations also illustrated that within the resulting 28 papers, more than 71% of models reached good to perfect performance based on the area under the receiver operating characteristic curve (AUC), where artificial neural networks and ensemble learning models had the biggest share among the best-performing models.</p></div><div><h3>Conclusion</h3><p>The utilization of ML models is increasing in the literature. The current performance level indicates that ML can potentially turn to powerful tools in predicting DOS and LOS for different purposes. Meanwhile, the literature is not matured yet in reporting real-life application. Future studies can focus on model specification and validation by considering empirical application.</p></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1386505624002946/pdfft?md5=ec2c36dc2c8914f4d48c34b8a7171153&pid=1-s2.0-S1386505624002946-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386505624002946\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624002946","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

导言近年来,人口老龄化等各种因素导致髋关节和膝关节置换术的需求不断攀升,使本已有限的医院资源更加紧张。为应对这一挑战,人们开始关注医疗和运营效率的提高。这包括更多地使用机器学习(ML)来预测全膝和全髋关节置换术的手术持续时间(DOS)和住院时间(LOS),从而优化资源分配,满足医疗和运营方面的限制。本文探讨了预测DOS和LOS的ML模型的开发和性能。方法按照PRISMA指南对2010-2023年间的出版物进行了系统检索。考虑到纳入和排除标准,从 PubMed、Web of Science 和人工搜索中收集的 722 篇论文中,有 28 篇被纳入研究。研究采用描述性统计方法对提取的数据进行分析,包括数据预处理、模型开发和模型性能评估。病人的年龄被认为是预测 DOS 和 LOS 最常用和最重要的变量。调查还表明,在所得出的 28 篇论文中,根据接收者操作特征曲线下面积(AUC),超过 71% 的模型达到了良好到完美的性能,其中人工神经网络和集合学习模型在性能最好的模型中占有最大份额。目前的性能水平表明,ML 有可能成为预测不同用途的 DOS 和 LOS 的强大工具。同时,文献在报告实际应用方面还不够成熟。今后的研究可以通过考虑实际应用,重点关注模型的规范和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning for predicting duration of surgery and length of stay: A literature review on joint arthroplasty

Introduction

In recent years, different factors such as population aging have caused escalating demand for hip and knee arthroplasty straining already limited hospitals’ resources. To address this challenge, focus is put on medical and operational efficiency improvements. This includes an increased use of machine learning (ML) to predict duration of surgery (DOS) and length of stay (LOS) for total knee and total hip arthroplasty, which can be utilized for optimizing resource allocation to satisfy medical and operational limitations. This paper explores the development and performance of ML models in predicting DOS and LOS.

Methods

A systematic search of publications between 2010–2023 was conducted following PRISMA guidelines. Considering the inclusion and exclusion criteria, 28 out of 722 gathered papers from PubMed, Web of Science, and manual search were included in the study. Descriptive statistics was used to analyze the extracted data regarding data preprocessing, model development, and model performance assessment.

Results

Most of the papers work on LOS as a binary variable. Patient’s age was identified as the most frequently used and reported as important variable for predicting DOS and LOS. Investigations also illustrated that within the resulting 28 papers, more than 71% of models reached good to perfect performance based on the area under the receiver operating characteristic curve (AUC), where artificial neural networks and ensemble learning models had the biggest share among the best-performing models.

Conclusion

The utilization of ML models is increasing in the literature. The current performance level indicates that ML can potentially turn to powerful tools in predicting DOS and LOS for different purposes. Meanwhile, the literature is not matured yet in reporting real-life application. Future studies can focus on model specification and validation by considering empirical application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
期刊最新文献
Application of the openEHR reference model for PGHD: A case study on the DH-Convener initiative Tracking provenance in clinical data warehouses for quality management Acute myocardial infarction risk prediction in emergency chest pain patients: An external validation study Healthcare professionals’ cross-organizational access to electronic health records: A scoping review Cross-modal similar clinical case retrieval using a modular model based on contrastive learning and k-nearest neighbor search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1