具有墨西哥帽型激活函数的状态依赖开关神经网络的多稳定性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-09-17 DOI:10.1016/j.physd.2024.134363
Weixin Yan, Zhen Wang, Yang Liu
{"title":"具有墨西哥帽型激活函数的状态依赖开关神经网络的多稳定性","authors":"Weixin Yan,&nbsp;Zhen Wang,&nbsp;Yang Liu","doi":"10.1016/j.physd.2024.134363","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the issue of multistability in state-dependent switched neural networks (SSNNs) with Mexican-hat-type activation functions (AFs). It establishes the coexistence and stability of multiple equilibrium points (EPs). Initially, the state space is partitioned based on the geometric characteristics of the Mexican-hat-type AF, enabling to determine the positions of the EPs. Secondly, the coexistence of <span><math><mrow><msup><mrow><mn>9</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><msup><mrow><mn>7</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><msup><mrow><mn>5</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><msup><mrow><mn>3</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup></mrow></math></span> EPs for <span><math><mi>n</mi></math></span>-neurons SSNNs under specific sufficient conditions is proved with the Brouwer’s fixed-point theorem. Next, by using diagonally dominant matrix theory and Gershgorin circle theorem, it is proven that there are <span><math><mrow><msup><mrow><mn>5</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><msup><mrow><mn>4</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><msup><mrow><mn>3</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup></mrow></math></span> asymptotically stable EPs under some conditions, where <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> are nonnegative integers satisfying <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>≤</mo><mi>n</mi></mrow></math></span>. Therefore, we can obtain that SSNNs can have larger storage capacity by selecting the appropriate parameters <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></mrow></math></span>. Finally, the correctness of the results in this paper is verified through two numerical examples.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multistability of state-dependent switched neural networks with Mexican-hat-type activation functions\",\"authors\":\"Weixin Yan,&nbsp;Zhen Wang,&nbsp;Yang Liu\",\"doi\":\"10.1016/j.physd.2024.134363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the issue of multistability in state-dependent switched neural networks (SSNNs) with Mexican-hat-type activation functions (AFs). It establishes the coexistence and stability of multiple equilibrium points (EPs). Initially, the state space is partitioned based on the geometric characteristics of the Mexican-hat-type AF, enabling to determine the positions of the EPs. Secondly, the coexistence of <span><math><mrow><msup><mrow><mn>9</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><msup><mrow><mn>7</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><msup><mrow><mn>5</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><msup><mrow><mn>3</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup></mrow></math></span> EPs for <span><math><mi>n</mi></math></span>-neurons SSNNs under specific sufficient conditions is proved with the Brouwer’s fixed-point theorem. Next, by using diagonally dominant matrix theory and Gershgorin circle theorem, it is proven that there are <span><math><mrow><msup><mrow><mn>5</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><msup><mrow><mn>4</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><msup><mrow><mn>3</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msup><msup><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msup></mrow></math></span> asymptotically stable EPs under some conditions, where <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and <span><math><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> are nonnegative integers satisfying <span><math><mrow><mn>0</mn><mo>≤</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>≤</mo><mi>n</mi></mrow></math></span>. Therefore, we can obtain that SSNNs can have larger storage capacity by selecting the appropriate parameters <span><math><mrow><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn></mrow></math></span>. Finally, the correctness of the results in this paper is verified through two numerical examples.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278924003130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有墨西哥帽型激活函数(AFs)的状态依赖开关神经网络(SSNNs)的多稳定性问题。它确定了多个平衡点 (EP) 的共存性和稳定性。首先,根据墨西哥帽型激活函数的几何特征对状态空间进行划分,从而确定 EPs 的位置。其次,利用布劳威尔定点定理证明了 n 神经元 SSNN 在特定充分条件下 9h17h25h33h4 EPs 的共存性。接着,利用对角支配矩阵理论和格什高林圆定理,证明在某些条件下存在 5h14h23h32h4 近似稳定 EP,其中 h1、h2、h3 和 h4 为非负整数,满足 0≤h1+h2+h3+h4≤n 的条件。因此,我们可以得出,通过选择适当的参数 hi,i=1,2,3,4 可以使 SSNN 具有更大的存储容量。最后,本文通过两个数值实例验证了结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multistability of state-dependent switched neural networks with Mexican-hat-type activation functions

This paper investigates the issue of multistability in state-dependent switched neural networks (SSNNs) with Mexican-hat-type activation functions (AFs). It establishes the coexistence and stability of multiple equilibrium points (EPs). Initially, the state space is partitioned based on the geometric characteristics of the Mexican-hat-type AF, enabling to determine the positions of the EPs. Secondly, the coexistence of 9h17h25h33h4 EPs for n-neurons SSNNs under specific sufficient conditions is proved with the Brouwer’s fixed-point theorem. Next, by using diagonally dominant matrix theory and Gershgorin circle theorem, it is proven that there are 5h14h23h32h4 asymptotically stable EPs under some conditions, where h1,h2,h3 and h4 are nonnegative integers satisfying 0h1+h2+h3+h4n. Therefore, we can obtain that SSNNs can have larger storage capacity by selecting the appropriate parameters hi,i=1,2,3,4. Finally, the correctness of the results in this paper is verified through two numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1