乳腺癌中的非编码 RNA 和雌激素受体信号转导:基于纳米技术的治疗方法

IF 2.9 4区 医学 Q2 PATHOLOGY Pathology, research and practice Pub Date : 2024-08-29 DOI:10.1016/j.prp.2024.155568
{"title":"乳腺癌中的非编码 RNA 和雌激素受体信号转导:基于纳米技术的治疗方法","authors":"","doi":"10.1016/j.prp.2024.155568","DOIUrl":null,"url":null,"abstract":"<div><p>This review investigates the regulatory role of non-coding RNAs (ncRNAs) in estrogen receptor (ER) signaling pathways, particularly in the context of breast cancer therapy, with an emphasis on the emerging potential of nanotechnology for drug delivery. The information was obtained from reputable databases, including PubMed, Elsevier, Springer, Wiley, Taylor, and Francis, which contain past and present research. Breast cancer remains the most prevalent cancer among women worldwide, and ER signaling mechanisms heavily influence its progression. Treatment options have traditionally encompassed surgery, chemotherapy, radiation therapy, targeted therapy, and hormone therapy. In recent decades, nanomedicine has emerged as a promising approach to breast cancer treatment. By passively targeting tumor cells and reducing toxicity, nanodrugs can overcome the challenges of conventional chemotherapy. Additionally, nanocarriers can stimulate tumor cells, enhancing treatment efficacy. Recent advancements in nanomedicine offer promising approaches for targeted cancer therapy, potentially overcoming the limitations of conventional treatments. This review explores the interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) with ER pathways, their impact on breast cancer progression, and how these interactions can be leveraged to enhance therapeutic efficacy through nanotechnology-based drug delivery systems.</p></div>","PeriodicalId":19916,"journal":{"name":"Pathology, research and practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-coding RNAs and estrogen receptor signaling in breast cancer: Nanotechnology-based therapeutic approaches\",\"authors\":\"\",\"doi\":\"10.1016/j.prp.2024.155568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review investigates the regulatory role of non-coding RNAs (ncRNAs) in estrogen receptor (ER) signaling pathways, particularly in the context of breast cancer therapy, with an emphasis on the emerging potential of nanotechnology for drug delivery. The information was obtained from reputable databases, including PubMed, Elsevier, Springer, Wiley, Taylor, and Francis, which contain past and present research. Breast cancer remains the most prevalent cancer among women worldwide, and ER signaling mechanisms heavily influence its progression. Treatment options have traditionally encompassed surgery, chemotherapy, radiation therapy, targeted therapy, and hormone therapy. In recent decades, nanomedicine has emerged as a promising approach to breast cancer treatment. By passively targeting tumor cells and reducing toxicity, nanodrugs can overcome the challenges of conventional chemotherapy. Additionally, nanocarriers can stimulate tumor cells, enhancing treatment efficacy. Recent advancements in nanomedicine offer promising approaches for targeted cancer therapy, potentially overcoming the limitations of conventional treatments. This review explores the interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) with ER pathways, their impact on breast cancer progression, and how these interactions can be leveraged to enhance therapeutic efficacy through nanotechnology-based drug delivery systems.</p></div>\",\"PeriodicalId\":19916,\"journal\":{\"name\":\"Pathology, research and practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathology, research and practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0344033824004795\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathology, research and practice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0344033824004795","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述探讨了非编码 RNA(ncRNA)在雌激素受体(ER)信号通路中的调控作用,尤其是在乳腺癌治疗中的作用,重点是纳米技术在药物递送方面的新兴潜力。这些信息来自著名的数据库,包括 PubMed、Elsevier、Springer、Wiley、Taylor 和 Francis,其中包含过去和现在的研究。乳腺癌仍然是全球妇女中发病率最高的癌症,ER 信号机制严重影响着乳腺癌的发展。传统的治疗方法包括手术、化疗、放疗、靶向治疗和激素治疗。近几十年来,纳米医学已成为治疗乳腺癌的一种前景广阔的方法。通过被动靶向肿瘤细胞和降低毒性,纳米药物可以克服传统化疗的挑战。此外,纳米载体还能刺激肿瘤细胞,提高治疗效果。纳米医学的最新进展为癌症靶向治疗提供了前景广阔的方法,有可能克服传统疗法的局限性。本综述探讨了长非编码 RNA(lncRNA)和 microRNA(miRNA)与 ER 通路之间的相互作用、它们对乳腺癌进展的影响,以及如何利用这些相互作用通过基于纳米技术的给药系统提高疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-coding RNAs and estrogen receptor signaling in breast cancer: Nanotechnology-based therapeutic approaches

This review investigates the regulatory role of non-coding RNAs (ncRNAs) in estrogen receptor (ER) signaling pathways, particularly in the context of breast cancer therapy, with an emphasis on the emerging potential of nanotechnology for drug delivery. The information was obtained from reputable databases, including PubMed, Elsevier, Springer, Wiley, Taylor, and Francis, which contain past and present research. Breast cancer remains the most prevalent cancer among women worldwide, and ER signaling mechanisms heavily influence its progression. Treatment options have traditionally encompassed surgery, chemotherapy, radiation therapy, targeted therapy, and hormone therapy. In recent decades, nanomedicine has emerged as a promising approach to breast cancer treatment. By passively targeting tumor cells and reducing toxicity, nanodrugs can overcome the challenges of conventional chemotherapy. Additionally, nanocarriers can stimulate tumor cells, enhancing treatment efficacy. Recent advancements in nanomedicine offer promising approaches for targeted cancer therapy, potentially overcoming the limitations of conventional treatments. This review explores the interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) with ER pathways, their impact on breast cancer progression, and how these interactions can be leveraged to enhance therapeutic efficacy through nanotechnology-based drug delivery systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.60%
发文量
405
审稿时长
24 days
期刊介绍: Pathology, Research and Practice provides accessible coverage of the most recent developments across the entire field of pathology: Reviews focus on recent progress in pathology, while Comments look at interesting current problems and at hypotheses for future developments in pathology. Original Papers present novel findings on all aspects of general, anatomic and molecular pathology. Rapid Communications inform readers on preliminary findings that may be relevant for further studies and need to be communicated quickly. Teaching Cases look at new aspects or special diagnostic problems of diseases and at case reports relevant for the pathologist''s practice.
期刊最新文献
Clinical utility of plasma cell-free DNA (cfDNA) in diffuse gliomas for the detection of IDH1 R132H mutation Long journey on the role of long non-coding RNA (lncRNA) in acute kidney injury (AKI) Editorial Board Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates TNFRSF10D expression as a potential biomarker for cisplatin-induced damage and ovarian tumor relapse prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1