Pingili Vydehi , Gobinath Ravindran , G. Shyamala , Sri Bala G , Vamsi Nagaraju T , Mallaiah Mekala , Rama Rao Karri
{"title":"基于好氧颗粒污泥的可持续废水处理:从科学计量学角度看工艺、瓶颈和知识差距","authors":"Pingili Vydehi , Gobinath Ravindran , G. Shyamala , Sri Bala G , Vamsi Nagaraju T , Mallaiah Mekala , Rama Rao Karri","doi":"10.1016/j.hazadv.2024.100462","DOIUrl":null,"url":null,"abstract":"<div><p>By 2030, the UN General Assembly issued Sustainable Development Goal 6 (SDG 6), which calls for the provision of safe drinking water; however, little progress has been made. Wastewater treatment and reuse have garnered significant attention owing to the increasing demand for sanitation and sustainable development practices. Multiple methods have been designed and tested, among which Aerobic Granular Sludge-based treatment is rapidly emerging as a promising treatment option. Aerobic Granular Sludge (AGS) plants have been the focus of research due to their low energy consumption, small footprint, and low unit costs. However, the full-scale application of AGS may be hindered by constraints such as strict nitrogen and phosphorus discharge standards, frequent and large temperature fluctuations, and fluctuating influent flow volume. Despite the existence of a few reviews related to AGS technology, there is a need for an extensive review coupled with a research progress analysis that provides comprehensive information on the nuances of AGS, which prompted this article. AGS technique and research progress in AGS are identified through a scientometric lens is reviewed in this article. The topics covered include the generation of AGS through the use of technology, usage, challenges associated with managing AGS plants, and a comparison between AGS and other methods of energy storage. An analysis was conducted to understand the keywords for which research is currently active: authors who have conducted more research, collaboration, and other bibliometric factors associated with AGS research.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"16 ","pages":"Article 100462"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000639/pdfft?md5=15ec54cf96ff229247ed4cd4ff0021d5&pid=1-s2.0-S2772416624000639-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Aerobic granular sludge-based sustainable wastewater treatment: Process, bottlenecks, and knowledge gap through scientometric perspective\",\"authors\":\"Pingili Vydehi , Gobinath Ravindran , G. Shyamala , Sri Bala G , Vamsi Nagaraju T , Mallaiah Mekala , Rama Rao Karri\",\"doi\":\"10.1016/j.hazadv.2024.100462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By 2030, the UN General Assembly issued Sustainable Development Goal 6 (SDG 6), which calls for the provision of safe drinking water; however, little progress has been made. Wastewater treatment and reuse have garnered significant attention owing to the increasing demand for sanitation and sustainable development practices. Multiple methods have been designed and tested, among which Aerobic Granular Sludge-based treatment is rapidly emerging as a promising treatment option. Aerobic Granular Sludge (AGS) plants have been the focus of research due to their low energy consumption, small footprint, and low unit costs. However, the full-scale application of AGS may be hindered by constraints such as strict nitrogen and phosphorus discharge standards, frequent and large temperature fluctuations, and fluctuating influent flow volume. Despite the existence of a few reviews related to AGS technology, there is a need for an extensive review coupled with a research progress analysis that provides comprehensive information on the nuances of AGS, which prompted this article. AGS technique and research progress in AGS are identified through a scientometric lens is reviewed in this article. The topics covered include the generation of AGS through the use of technology, usage, challenges associated with managing AGS plants, and a comparison between AGS and other methods of energy storage. An analysis was conducted to understand the keywords for which research is currently active: authors who have conducted more research, collaboration, and other bibliometric factors associated with AGS research.</p></div>\",\"PeriodicalId\":73763,\"journal\":{\"name\":\"Journal of hazardous materials advances\",\"volume\":\"16 \",\"pages\":\"Article 100462\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772416624000639/pdfft?md5=15ec54cf96ff229247ed4cd4ff0021d5&pid=1-s2.0-S2772416624000639-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of hazardous materials advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772416624000639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416624000639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Aerobic granular sludge-based sustainable wastewater treatment: Process, bottlenecks, and knowledge gap through scientometric perspective
By 2030, the UN General Assembly issued Sustainable Development Goal 6 (SDG 6), which calls for the provision of safe drinking water; however, little progress has been made. Wastewater treatment and reuse have garnered significant attention owing to the increasing demand for sanitation and sustainable development practices. Multiple methods have been designed and tested, among which Aerobic Granular Sludge-based treatment is rapidly emerging as a promising treatment option. Aerobic Granular Sludge (AGS) plants have been the focus of research due to their low energy consumption, small footprint, and low unit costs. However, the full-scale application of AGS may be hindered by constraints such as strict nitrogen and phosphorus discharge standards, frequent and large temperature fluctuations, and fluctuating influent flow volume. Despite the existence of a few reviews related to AGS technology, there is a need for an extensive review coupled with a research progress analysis that provides comprehensive information on the nuances of AGS, which prompted this article. AGS technique and research progress in AGS are identified through a scientometric lens is reviewed in this article. The topics covered include the generation of AGS through the use of technology, usage, challenges associated with managing AGS plants, and a comparison between AGS and other methods of energy storage. An analysis was conducted to understand the keywords for which research is currently active: authors who have conducted more research, collaboration, and other bibliometric factors associated with AGS research.