{"title":"砷诱导的 mtDNA 释放通过 cGAS-STING 信号转导促进鸡肝细胞的炎症反应","authors":"","doi":"10.1016/j.pestbp.2024.106129","DOIUrl":null,"url":null,"abstract":"<div><p>Arsenic is a toxic element that can cause severe liver damage in humans and animals. Arsenic-based inorganic pesticides, such as lead arsenate, copper arsenate, and calcium arsenate, are widely used for insect control and can eventually affect human health through accumulation in the food chain. However, the relationship between arsenic trioxide (ATO)-induced hepatotoxicity and the cGAS-STING signaling pathway has not been reported. The aim of this study was to investigate the potential role of inflammatory response in ATO-induced hepatotoxicity in chickens. In this study, we found that ATO exposure resulted in mtDNA leakage into the cytoplasm of chicken hepatocytes, which activated the cGAS-STING pathway and significantly increased the cGAS, STING, TBK1, and IRF7 mRNA and protein expression levels. Moreover, type I interferon response was activated. Concurrently, STING triggered the activation of the traditional NF-κB signaling pathway and promoted the expression of pro-inflammatory cytokine genes, including TNF-α, IL-6, and IL-1β. Subsequently, we found that both mtDNA clearance with EtBr and inhibition of the cGAS-STING pathway with H-151 reversed the ATO-induced innate immune and inflammatory responses. In summary, the above findings indicate that chicken hepatocytes can induce innate immune responses and inflammatory responses via mtDNA-cGAS-STING under ATO-exposure conditions, which is of great significance for further studies on the toxicity mechanism of ATO.</p></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arsenic-induced mtDNA release promotes inflammatory responses through cGAS-STING signaling in chicken hepatocytes\",\"authors\":\"\",\"doi\":\"10.1016/j.pestbp.2024.106129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Arsenic is a toxic element that can cause severe liver damage in humans and animals. Arsenic-based inorganic pesticides, such as lead arsenate, copper arsenate, and calcium arsenate, are widely used for insect control and can eventually affect human health through accumulation in the food chain. However, the relationship between arsenic trioxide (ATO)-induced hepatotoxicity and the cGAS-STING signaling pathway has not been reported. The aim of this study was to investigate the potential role of inflammatory response in ATO-induced hepatotoxicity in chickens. In this study, we found that ATO exposure resulted in mtDNA leakage into the cytoplasm of chicken hepatocytes, which activated the cGAS-STING pathway and significantly increased the cGAS, STING, TBK1, and IRF7 mRNA and protein expression levels. Moreover, type I interferon response was activated. Concurrently, STING triggered the activation of the traditional NF-κB signaling pathway and promoted the expression of pro-inflammatory cytokine genes, including TNF-α, IL-6, and IL-1β. Subsequently, we found that both mtDNA clearance with EtBr and inhibition of the cGAS-STING pathway with H-151 reversed the ATO-induced innate immune and inflammatory responses. In summary, the above findings indicate that chicken hepatocytes can induce innate immune responses and inflammatory responses via mtDNA-cGAS-STING under ATO-exposure conditions, which is of great significance for further studies on the toxicity mechanism of ATO.</p></div>\",\"PeriodicalId\":19828,\"journal\":{\"name\":\"Pesticide Biochemistry and Physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pesticide Biochemistry and Physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0048357524003626\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357524003626","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Arsenic-induced mtDNA release promotes inflammatory responses through cGAS-STING signaling in chicken hepatocytes
Arsenic is a toxic element that can cause severe liver damage in humans and animals. Arsenic-based inorganic pesticides, such as lead arsenate, copper arsenate, and calcium arsenate, are widely used for insect control and can eventually affect human health through accumulation in the food chain. However, the relationship between arsenic trioxide (ATO)-induced hepatotoxicity and the cGAS-STING signaling pathway has not been reported. The aim of this study was to investigate the potential role of inflammatory response in ATO-induced hepatotoxicity in chickens. In this study, we found that ATO exposure resulted in mtDNA leakage into the cytoplasm of chicken hepatocytes, which activated the cGAS-STING pathway and significantly increased the cGAS, STING, TBK1, and IRF7 mRNA and protein expression levels. Moreover, type I interferon response was activated. Concurrently, STING triggered the activation of the traditional NF-κB signaling pathway and promoted the expression of pro-inflammatory cytokine genes, including TNF-α, IL-6, and IL-1β. Subsequently, we found that both mtDNA clearance with EtBr and inhibition of the cGAS-STING pathway with H-151 reversed the ATO-induced innate immune and inflammatory responses. In summary, the above findings indicate that chicken hepatocytes can induce innate immune responses and inflammatory responses via mtDNA-cGAS-STING under ATO-exposure conditions, which is of great significance for further studies on the toxicity mechanism of ATO.
期刊介绍:
Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance.
Research Areas Emphasized Include the Biochemistry and Physiology of:
• Comparative toxicity
• Mode of action
• Pathophysiology
• Plant growth regulators
• Resistance
• Other effects of pesticides on both parasites and hosts.