{"title":"基于微流控平台的病毒-宿主相互作用研究进展","authors":"Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang","doi":"10.1016/j.cclet.2024.110302","DOIUrl":null,"url":null,"abstract":"<div><p>Viral epidemics pose a serious threat to global public health, making it essential to explore virus-host interactions for uncovering the pathogenesis of viral diseases and developing effective antiviral strategies. Traditional <em>in vitro</em> cell infection models struggle to replicate physiological microenvironment, while animal infection models may encounter obstacles such as species gap, high-cost, and ethical issues. Additionally, potential heterogeneous infection outcomes are usually inaccessible by population-based experiments. Microfluidics, as an emerging interdisciplinary platform, has proven to be a powerful tool for inquiring virus-host interactions. In this review, conventional virological methods were introduced first and remarkable advantages of microfluidics in viral cell biology were highlighted. Next, the in-depth applications of microfluidics in analyzing heterogeneity of virus-host interplays, dynamic monitoring of events related to viral life cycle, and modeling of viral infectious diseases were fully elaborated from the perspective of single-cell chip, multi-cell culture chip and organ-on-a-chip (organ chip). Finally, the opportunities and challenges in developing robust microfluidic methods for virology were discussed. Overall, this review aims to provide an overview of microfluidic-based research on virus-host interaction and promote multidisciplinary collaborations for better understanding and responding to viral threats.</p></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"35 12","pages":"Article 110302"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in virus-host interaction research based on microfluidic platforms\",\"authors\":\"Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang\",\"doi\":\"10.1016/j.cclet.2024.110302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Viral epidemics pose a serious threat to global public health, making it essential to explore virus-host interactions for uncovering the pathogenesis of viral diseases and developing effective antiviral strategies. Traditional <em>in vitro</em> cell infection models struggle to replicate physiological microenvironment, while animal infection models may encounter obstacles such as species gap, high-cost, and ethical issues. Additionally, potential heterogeneous infection outcomes are usually inaccessible by population-based experiments. Microfluidics, as an emerging interdisciplinary platform, has proven to be a powerful tool for inquiring virus-host interactions. In this review, conventional virological methods were introduced first and remarkable advantages of microfluidics in viral cell biology were highlighted. Next, the in-depth applications of microfluidics in analyzing heterogeneity of virus-host interplays, dynamic monitoring of events related to viral life cycle, and modeling of viral infectious diseases were fully elaborated from the perspective of single-cell chip, multi-cell culture chip and organ-on-a-chip (organ chip). Finally, the opportunities and challenges in developing robust microfluidic methods for virology were discussed. Overall, this review aims to provide an overview of microfluidic-based research on virus-host interaction and promote multidisciplinary collaborations for better understanding and responding to viral threats.</p></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"35 12\",\"pages\":\"Article 110302\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724008210\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724008210","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Advances in virus-host interaction research based on microfluidic platforms
Viral epidemics pose a serious threat to global public health, making it essential to explore virus-host interactions for uncovering the pathogenesis of viral diseases and developing effective antiviral strategies. Traditional in vitro cell infection models struggle to replicate physiological microenvironment, while animal infection models may encounter obstacles such as species gap, high-cost, and ethical issues. Additionally, potential heterogeneous infection outcomes are usually inaccessible by population-based experiments. Microfluidics, as an emerging interdisciplinary platform, has proven to be a powerful tool for inquiring virus-host interactions. In this review, conventional virological methods were introduced first and remarkable advantages of microfluidics in viral cell biology were highlighted. Next, the in-depth applications of microfluidics in analyzing heterogeneity of virus-host interplays, dynamic monitoring of events related to viral life cycle, and modeling of viral infectious diseases were fully elaborated from the perspective of single-cell chip, multi-cell culture chip and organ-on-a-chip (organ chip). Finally, the opportunities and challenges in developing robust microfluidic methods for virology were discussed. Overall, this review aims to provide an overview of microfluidic-based research on virus-host interaction and promote multidisciplinary collaborations for better understanding and responding to viral threats.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.