利用光学脉冲热成像技术自动检测古代壁画裂缝的注意力增强型 U-Net

IF 3.5 2区 综合性期刊 0 ARCHAEOLOGY Journal of Cultural Heritage Pub Date : 2024-09-18 DOI:10.1016/j.culher.2024.08.015
Jingwen Cui , Ning Tao , Akam M. Omer , Cunlin Zhang , Qunxi Zhang , Yirong Ma , Zhiyang Zhang , Dazhi Yang , Hai Zhang , Qiang Fang , Xavier Maldague , Stefano Sfarra , Xiaoyu Chen , Jianqiao Meng , Yuxia Duan
{"title":"利用光学脉冲热成像技术自动检测古代壁画裂缝的注意力增强型 U-Net","authors":"Jingwen Cui ,&nbsp;Ning Tao ,&nbsp;Akam M. Omer ,&nbsp;Cunlin Zhang ,&nbsp;Qunxi Zhang ,&nbsp;Yirong Ma ,&nbsp;Zhiyang Zhang ,&nbsp;Dazhi Yang ,&nbsp;Hai Zhang ,&nbsp;Qiang Fang ,&nbsp;Xavier Maldague ,&nbsp;Stefano Sfarra ,&nbsp;Xiaoyu Chen ,&nbsp;Jianqiao Meng ,&nbsp;Yuxia Duan","doi":"10.1016/j.culher.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>Ancient mural degradation and destruction may result from various natural causes, resulting in cracks, peeling, or bulging. As such, regular testing and evaluation of ancient murals are indispensable for protecting and preserving cultural relics. In many scenarios, the acquisition of detection data can be expedited through the use of mechanical arms and imaging equipment. However, the subsequent data analysis relies on experienced human inspectors, resulting in a laborious and time-consuming process. This study focuses on automated analysis of cracks in ancient murals using optical pulsed thermography. A technique that combines an attention mechanism and the U-Net neural network is proposed for refined crack feature extraction. Concerning the identification of ancient mural cracks based on limited training data, U-Net with the attention mechanism demonstrates superior performance over both the conventional U-Net and a traditional image segmentation algorithm.</p></div>","PeriodicalId":15480,"journal":{"name":"Journal of Cultural Heritage","volume":"70 ","pages":"Pages 111-119"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-enhanced U-Net for automatic crack detection in ancient murals using optical pulsed thermography\",\"authors\":\"Jingwen Cui ,&nbsp;Ning Tao ,&nbsp;Akam M. Omer ,&nbsp;Cunlin Zhang ,&nbsp;Qunxi Zhang ,&nbsp;Yirong Ma ,&nbsp;Zhiyang Zhang ,&nbsp;Dazhi Yang ,&nbsp;Hai Zhang ,&nbsp;Qiang Fang ,&nbsp;Xavier Maldague ,&nbsp;Stefano Sfarra ,&nbsp;Xiaoyu Chen ,&nbsp;Jianqiao Meng ,&nbsp;Yuxia Duan\",\"doi\":\"10.1016/j.culher.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ancient mural degradation and destruction may result from various natural causes, resulting in cracks, peeling, or bulging. As such, regular testing and evaluation of ancient murals are indispensable for protecting and preserving cultural relics. In many scenarios, the acquisition of detection data can be expedited through the use of mechanical arms and imaging equipment. However, the subsequent data analysis relies on experienced human inspectors, resulting in a laborious and time-consuming process. This study focuses on automated analysis of cracks in ancient murals using optical pulsed thermography. A technique that combines an attention mechanism and the U-Net neural network is proposed for refined crack feature extraction. Concerning the identification of ancient mural cracks based on limited training data, U-Net with the attention mechanism demonstrates superior performance over both the conventional U-Net and a traditional image segmentation algorithm.</p></div>\",\"PeriodicalId\":15480,\"journal\":{\"name\":\"Journal of Cultural Heritage\",\"volume\":\"70 \",\"pages\":\"Pages 111-119\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cultural Heritage\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S129620742400181X\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHAEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cultural Heritage","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S129620742400181X","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

古代壁画的退化和破坏可能源于各种自然原因,导致裂缝、剥落或隆起。因此,对古代壁画进行定期检测和评估对于保护和保存文物是必不可少的。在许多情况下,通过使用机械臂和成像设备可以加快检测数据的获取。但是,随后的数据分析需要依靠经验丰富的人工检测人员,因此过程费时费力。本研究的重点是利用光学脉冲热成像技术对古代壁画中的裂缝进行自动分析。研究提出了一种结合注意力机制和 U-Net 神经网络的技术,用于精细提取裂缝特征。在基于有限训练数据识别古代壁画裂缝方面,具有注意力机制的 U-Net 神经网络比传统的 U-Net 神经网络和传统的图像分割算法都表现出更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attention-enhanced U-Net for automatic crack detection in ancient murals using optical pulsed thermography

Ancient mural degradation and destruction may result from various natural causes, resulting in cracks, peeling, or bulging. As such, regular testing and evaluation of ancient murals are indispensable for protecting and preserving cultural relics. In many scenarios, the acquisition of detection data can be expedited through the use of mechanical arms and imaging equipment. However, the subsequent data analysis relies on experienced human inspectors, resulting in a laborious and time-consuming process. This study focuses on automated analysis of cracks in ancient murals using optical pulsed thermography. A technique that combines an attention mechanism and the U-Net neural network is proposed for refined crack feature extraction. Concerning the identification of ancient mural cracks based on limited training data, U-Net with the attention mechanism demonstrates superior performance over both the conventional U-Net and a traditional image segmentation algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cultural Heritage
Journal of Cultural Heritage 综合性期刊-材料科学:综合
CiteScore
6.80
自引率
9.70%
发文量
166
审稿时长
52 days
期刊介绍: The Journal of Cultural Heritage publishes original papers which comprise previously unpublished data and present innovative methods concerning all aspects of science and technology of cultural heritage as well as interpretation and theoretical issues related to preservation.
期刊最新文献
Use of hand-held gamma-ray spectrometry to assess decay of granite ashlars in historical buildings of NW Spain (Barbanza, Galicia) Technical examination of Wat Sisowath Ratanaram panel painting Methodology for measures of twist and crimp in canvas paintings supports and historical textiles Structural health monitoring and quantitative safety evaluation methods for ancient stone arch bridges Hybrid siloxane oligomer: A promising consolidant for the conservation of powdered tremolite jade artifacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1