产生不同热量的块体冷却过程中的传热模式分析

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-09-18 DOI:10.1016/j.ijthermalsci.2024.109424
H. Elouizi , L. El Moutaouakil , R. Hidki , M. Boukendil , B. Jamal , M. Ezzini , Z. Charqui
{"title":"产生不同热量的块体冷却过程中的传热模式分析","authors":"H. Elouizi ,&nbsp;L. El Moutaouakil ,&nbsp;R. Hidki ,&nbsp;M. Boukendil ,&nbsp;B. Jamal ,&nbsp;M. Ezzini ,&nbsp;Z. Charqui","doi":"10.1016/j.ijthermalsci.2024.109424","DOIUrl":null,"url":null,"abstract":"<div><p>Achieving improved cooling efficiency and control in electronic components with varying heat outputs can be realized through a thorough analysis of different heat transfer modes, focusing on their contributions and interactions within the system. The analysis is conducted within a cavity containing three circular blocks generating varying amounts of heat. The blocks are affixed to an insulated plate, dividing the cavity into two identical sections with different fluids and different cooling mechanisms. In the open portion of the divided cavity, block cooling is achieved through forced convection using a nanofluid, while the closed section dissipates heat through natural convection and surface radiation. The numerical solution of the governing equations is performed using Galerkin's Finite Element Method, with detailed examination of the cooling process considering various parameters, such as block displacement (<span><math><mrow><mn>1.5</mn><mtext>cm</mtext><mo>≤</mo><msub><mi>y</mi><mn>1</mn></msub><mo>≤</mo><mn>3.25</mn><mtext>cm</mtext></mrow></math></span>) and dimensions (<span><math><mrow><mn>0.25</mn><mtext>cm</mtext><mo>≤</mo><mi>R</mi><mo>≤</mo><mn>1.5</mn><mtext>cm</mtext></mrow></math></span>), Reynolds number (<span><math><mrow><mn>10</mn><mo>≤</mo><mtext>Re</mtext><mo>≤</mo><mn>1000</mn></mrow></math></span>), nanoparticles nature and volumetric fraction(0 %–10 %), emissivity (<span><math><mrow><mn>0</mn><mo>≤</mo><mi>ε</mi><mo>≤</mo><mn>1</mn></mrow></math></span>), thermal heat ratio(0.125 to 8), and cavity inclination angle(0°–180°). The results show that the combination of natural convection and surface radiation can be highly effective, rivaling forced convection in cooling the blocks. The study shows that an increase in the Reynolds number results in a temperature reduction of up to 6 °C, while increasing the emissivity leads to a more significant drop of around 10 °C. Additionally, miniaturizing the blocks by reducing their radius by a factor of six causes the maximum temperature to rise by over 20 °C.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"208 ","pages":"Article 109424"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of heat transfer modes in the cooling of blocks generating different heat quantities\",\"authors\":\"H. Elouizi ,&nbsp;L. El Moutaouakil ,&nbsp;R. Hidki ,&nbsp;M. Boukendil ,&nbsp;B. Jamal ,&nbsp;M. Ezzini ,&nbsp;Z. Charqui\",\"doi\":\"10.1016/j.ijthermalsci.2024.109424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Achieving improved cooling efficiency and control in electronic components with varying heat outputs can be realized through a thorough analysis of different heat transfer modes, focusing on their contributions and interactions within the system. The analysis is conducted within a cavity containing three circular blocks generating varying amounts of heat. The blocks are affixed to an insulated plate, dividing the cavity into two identical sections with different fluids and different cooling mechanisms. In the open portion of the divided cavity, block cooling is achieved through forced convection using a nanofluid, while the closed section dissipates heat through natural convection and surface radiation. The numerical solution of the governing equations is performed using Galerkin's Finite Element Method, with detailed examination of the cooling process considering various parameters, such as block displacement (<span><math><mrow><mn>1.5</mn><mtext>cm</mtext><mo>≤</mo><msub><mi>y</mi><mn>1</mn></msub><mo>≤</mo><mn>3.25</mn><mtext>cm</mtext></mrow></math></span>) and dimensions (<span><math><mrow><mn>0.25</mn><mtext>cm</mtext><mo>≤</mo><mi>R</mi><mo>≤</mo><mn>1.5</mn><mtext>cm</mtext></mrow></math></span>), Reynolds number (<span><math><mrow><mn>10</mn><mo>≤</mo><mtext>Re</mtext><mo>≤</mo><mn>1000</mn></mrow></math></span>), nanoparticles nature and volumetric fraction(0 %–10 %), emissivity (<span><math><mrow><mn>0</mn><mo>≤</mo><mi>ε</mi><mo>≤</mo><mn>1</mn></mrow></math></span>), thermal heat ratio(0.125 to 8), and cavity inclination angle(0°–180°). The results show that the combination of natural convection and surface radiation can be highly effective, rivaling forced convection in cooling the blocks. The study shows that an increase in the Reynolds number results in a temperature reduction of up to 6 °C, while increasing the emissivity leads to a more significant drop of around 10 °C. Additionally, miniaturizing the blocks by reducing their radius by a factor of six causes the maximum temperature to rise by over 20 °C.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"208 \",\"pages\":\"Article 109424\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924005465\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924005465","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过对不同传热模式进行全面分析,重点研究它们在系统中的贡献和相互作用,可以提高具有不同热量输出的电子元件的冷却效率和控制能力。分析是在一个包含三个产生不同热量的圆形块的空腔内进行的。这些块体被固定在一块绝缘板上,将空腔分为两个相同的部分,其中有不同的流体和不同的冷却机制。在被分割的空腔的开放部分,块冷却是通过使用纳米流体的强制对流实现的,而封闭部分则通过自然对流和表面辐射散热。利用伽勒金有限元法对控制方程进行了数值求解,并考虑了各种参数对冷却过程进行了详细研究,例如块体位移(1.5 厘米≤y1≤3.25 厘米)和尺寸(0.25 厘米≤R≤1.5 厘米)、雷诺数(10≤Re≤1000)、纳米颗粒性质和体积分数(0 %-10 %)、发射率(0≤ε≤1)、热热比(0.125 至 8)和空腔倾角(0°-180°)等参数进行了详细研究。结果表明,自然对流和表面辐射的结合可以非常有效地冷却砌块,其冷却效果可与强制对流相媲美。研究表明,增加雷诺数最多可使温度降低 6 °C,而增加辐射率则可使温度显著降低 10 °C左右。此外,通过将硅块半径缩小六倍来实现硅块的小型化,也会导致最高温度上升 20 °C以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of heat transfer modes in the cooling of blocks generating different heat quantities

Achieving improved cooling efficiency and control in electronic components with varying heat outputs can be realized through a thorough analysis of different heat transfer modes, focusing on their contributions and interactions within the system. The analysis is conducted within a cavity containing three circular blocks generating varying amounts of heat. The blocks are affixed to an insulated plate, dividing the cavity into two identical sections with different fluids and different cooling mechanisms. In the open portion of the divided cavity, block cooling is achieved through forced convection using a nanofluid, while the closed section dissipates heat through natural convection and surface radiation. The numerical solution of the governing equations is performed using Galerkin's Finite Element Method, with detailed examination of the cooling process considering various parameters, such as block displacement (1.5cmy13.25cm) and dimensions (0.25cmR1.5cm), Reynolds number (10Re1000), nanoparticles nature and volumetric fraction(0 %–10 %), emissivity (0ε1), thermal heat ratio(0.125 to 8), and cavity inclination angle(0°–180°). The results show that the combination of natural convection and surface radiation can be highly effective, rivaling forced convection in cooling the blocks. The study shows that an increase in the Reynolds number results in a temperature reduction of up to 6 °C, while increasing the emissivity leads to a more significant drop of around 10 °C. Additionally, miniaturizing the blocks by reducing their radius by a factor of six causes the maximum temperature to rise by over 20 °C.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Intelligent decision-making approach for rapid optimization of double-wall cooling structures under varying cooling demands Numerical simulation of battery thermal management based on ring microchannel cold plate Prediction of flow boiling characteristics in manifold microchannel radiator based on high heat flux cooling A quadrupole-based approach for integrated building simulation and energy-efficient load control Optimizing cooling performance of infrared transparent condensation-free radiant cooling by using bubble wrap
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1