{"title":"关于 R2 中具有梯度通量限制的不可压缩四成分趋化-纳维尔-斯托克斯方程的全局良好拟合问题","authors":"He Bao, Yaoning Jia, Qian Zhang","doi":"10.1016/j.nonrwa.2024.104222","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the four-component chemotaxis-Navier–Stokes system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>n</mi><mo>=</mo><mi>Δ</mi><mi>n</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mi>f</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>c</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>∇</mo><mi>c</mi><mo>)</mo></mrow><mo>−</mo><mi>n</mi><mi>m</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mo>+</mo><mi>m</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>m</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>m</mi><mo>=</mo><mi>Δ</mi><mi>m</mi><mo>−</mo><mi>n</mi><mi>m</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mrow><mo>(</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mo>∇</mo><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow><mo>∇</mo><mi>ϕ</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mo>∇</mo><mi>⋅</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>.</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Utilizing the Fourier localization technique alongside the inherent structure of the equations, we achieve global well-posedness for a class of rough initial data in the context of the 2D incompressible four-component chemotaxis-Navier–Stokes equations with gradient-dependent flux limitation <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ζ</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><mi>⋅</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>ζ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span>.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"81 ","pages":"Article 104222"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the global well-posedness for the incompressible four-component chemotaxis-Navier–Stokes equations with gradient-dependent flux limitation in R2\",\"authors\":\"He Bao, Yaoning Jia, Qian Zhang\",\"doi\":\"10.1016/j.nonrwa.2024.104222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the four-component chemotaxis-Navier–Stokes system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>n</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>n</mi><mo>=</mo><mi>Δ</mi><mi>n</mi><mo>−</mo><mo>∇</mo><mi>⋅</mi><mrow><mo>(</mo><mi>n</mi><mi>f</mi><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mo>∇</mo><mi>c</mi><mo>|</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>∇</mo><mi>c</mi><mo>)</mo></mrow><mo>−</mo><mi>n</mi><mi>m</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>c</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>c</mi><mo>=</mo><mi>Δ</mi><mi>c</mi><mo>−</mo><mi>c</mi><mo>+</mo><mi>m</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>m</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mi>m</mi><mo>=</mo><mi>Δ</mi><mi>m</mi><mo>−</mo><mi>n</mi><mi>m</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><mrow><mo>(</mo><mi>u</mi><mi>⋅</mi><mo>∇</mo><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mo>∇</mo><mi>P</mi><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo></mrow><mo>∇</mo><mi>ϕ</mi><mo>,</mo><mspace></mspace></mtd></mtr><mtr><mtd><mo>∇</mo><mi>⋅</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>.</mo><mspace></mspace></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>Utilizing the Fourier localization technique alongside the inherent structure of the equations, we achieve global well-posedness for a class of rough initial data in the context of the 2D incompressible four-component chemotaxis-Navier–Stokes equations with gradient-dependent flux limitation <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>ζ</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>f</mi></mrow></msub><mi>⋅</mi><msup><mrow><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>ζ</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mfrac><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></math></span> for <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"81 \",\"pages\":\"Article 104222\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001615\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001615","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑 R2 中的四分量化合-纳维尔-斯托克斯系统:nt+u⋅∇n=Δn-∇⋅(nf(|∇c|2)∇c)-nm,ct+u⋅∇c=Δc-c+m,mt+u⋅∇m=Δm-nm,ut+(u⋅∇)u+∇P=Δu+(n+m)∇j,∇⋅u=0。利用傅立叶局部化技术和方程的固有结构,我们在二维不可压缩的四分量趋化-纳维尔-斯托克斯方程的背景下,对一类粗糙初始数据实现了全局良好求解,该方程具有梯度依赖通量限制 f(ζ)=Kf⋅(1+ζ)-α2 for α>0。
On the global well-posedness for the incompressible four-component chemotaxis-Navier–Stokes equations with gradient-dependent flux limitation in R2
We consider the four-component chemotaxis-Navier–Stokes system in : Utilizing the Fourier localization technique alongside the inherent structure of the equations, we achieve global well-posedness for a class of rough initial data in the context of the 2D incompressible four-component chemotaxis-Navier–Stokes equations with gradient-dependent flux limitation for .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.