基于多物理场耦合方法的西安脉冲反应堆稳态分析

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Annals of Nuclear Energy Pub Date : 2024-09-18 DOI:10.1016/j.anucene.2024.110922
{"title":"基于多物理场耦合方法的西安脉冲反应堆稳态分析","authors":"","doi":"10.1016/j.anucene.2024.110922","DOIUrl":null,"url":null,"abstract":"<div><p>A multi-physics coupling system has been developed in this work based on the MOOSE framework for the steady-state analysis of XAPR (Xi’an Pulse Reactor). It consists of three physical models including neutronics, thermo-mechanics model of fuel element and fluid flow model. These models have been coupled by Picard iteration through the MultiApp and Transfer system based on MOOSE framework. The core state parameters of XAPR under steady-state operation condition are analyzed and the 3-dimensional space-dependent power density, fuel element temperature as well as the coolant temperature are provided by the multi-physics model. The multi-physics model successfully reproduced the experimental results of the monitored fuel element temperature in XAPR under different power level, and the deviation was less than 20 K. Future work would be to study the dynamics behavior of XAPR to further validate the multi-physics model and simulate other advanced micro reactors.</p></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady-state analysis of Xi’an Pulse Reactor based on the multi-physics coupling method\",\"authors\":\"\",\"doi\":\"10.1016/j.anucene.2024.110922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A multi-physics coupling system has been developed in this work based on the MOOSE framework for the steady-state analysis of XAPR (Xi’an Pulse Reactor). It consists of three physical models including neutronics, thermo-mechanics model of fuel element and fluid flow model. These models have been coupled by Picard iteration through the MultiApp and Transfer system based on MOOSE framework. The core state parameters of XAPR under steady-state operation condition are analyzed and the 3-dimensional space-dependent power density, fuel element temperature as well as the coolant temperature are provided by the multi-physics model. The multi-physics model successfully reproduced the experimental results of the monitored fuel element temperature in XAPR under different power level, and the deviation was less than 20 K. Future work would be to study the dynamics behavior of XAPR to further validate the multi-physics model and simulate other advanced micro reactors.</p></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005851\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005851","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究基于 MOOSE 框架开发了一个多物理场耦合系统,用于 XAPR(西安脉冲反应堆)的稳态分析。该系统由三个物理模型组成,包括中子学模型、燃料元件热力学模型和流体流动模型。这些模型通过基于 MOOSE 框架的多应用和传输系统进行 Picard 迭代耦合。多物理场模型分析了稳态运行条件下 XAPR 的核心状态参数,并提供了三维空间功率密度、燃料元件温度和冷却剂温度。多物理场模型成功再现了不同功率水平下 XAPR 中燃料元件温度监测的实验结果,偏差小于 20 K。未来的工作将是研究 XAPR 的动力学行为,以进一步验证多物理场模型,并模拟其他先进的微型反应堆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Steady-state analysis of Xi’an Pulse Reactor based on the multi-physics coupling method

A multi-physics coupling system has been developed in this work based on the MOOSE framework for the steady-state analysis of XAPR (Xi’an Pulse Reactor). It consists of three physical models including neutronics, thermo-mechanics model of fuel element and fluid flow model. These models have been coupled by Picard iteration through the MultiApp and Transfer system based on MOOSE framework. The core state parameters of XAPR under steady-state operation condition are analyzed and the 3-dimensional space-dependent power density, fuel element temperature as well as the coolant temperature are provided by the multi-physics model. The multi-physics model successfully reproduced the experimental results of the monitored fuel element temperature in XAPR under different power level, and the deviation was less than 20 K. Future work would be to study the dynamics behavior of XAPR to further validate the multi-physics model and simulate other advanced micro reactors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
期刊最新文献
Layered target design method for global spectrum optimization of radioisotope production Experimental study on the plate-type fuel melting behavior based on alternative materials Griffin: A MOOSE-based reactor physics application for multiphysics simulation of advanced nuclear reactors Research on the high-performance computing method for the neutron diffusion spatiotemporal kinetics equation based on the convolutional neural network Steady-state thermal–hydraulic analysis of an NTP reactor core based on the porous medium approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1