独立垂直绿化棚架的建筑性能建模方法:热带气候下的案例研究

IF 7.1 2区 工程技术 Q1 ENERGY & FUELS Sustainable Energy Technologies and Assessments Pub Date : 2024-09-17 DOI:10.1016/j.seta.2024.103972
Cristina Carpino , Miguel Chen Austin , Katherine Chung-Camargo , Dafni Mora , Natale Arcuri
{"title":"独立垂直绿化棚架的建筑性能建模方法:热带气候下的案例研究","authors":"Cristina Carpino ,&nbsp;Miguel Chen Austin ,&nbsp;Katherine Chung-Camargo ,&nbsp;Dafni Mora ,&nbsp;Natale Arcuri","doi":"10.1016/j.seta.2024.103972","DOIUrl":null,"url":null,"abstract":"<div><p>Passive strategies involving greenery significantly increase energy performance in buildings and comfortable microclimate conditions. However, few studies model and simulate their effect on buildings’ energy performance. Thus, this work assesses modelling approaches for conducting building performance simulations where detached vertical green trellises (DVGT) are included. The DVGT characteristics are modelled by: (i) large solid component blocks and (ii) small opaque solid component blocks to form a grid. A building with glazed façades is evaluated through dynamic simulation under the tropical climate of Panama City, using DesignBuilder. Parametric analysis is performed to study the impact of the trellis configuration on the performance in reducing the annual cooling, lighting, and total electricity consumption. A cost-effective evaluation is also conducted based on the net present value for each trellis configuration. Results showed strong agreement with previous studies reporting significant cooling needs reduction while increasing lighting needs and promising return periods. This concludes that the correct optical and radiative properties of the vegetation layer that are wanted to be modelled in a detached vertical trellis are crucial.</p></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"71 ","pages":"Article 103972"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building performance modelling approaches for a detached vertical green trellis: A case study in a tropical climate\",\"authors\":\"Cristina Carpino ,&nbsp;Miguel Chen Austin ,&nbsp;Katherine Chung-Camargo ,&nbsp;Dafni Mora ,&nbsp;Natale Arcuri\",\"doi\":\"10.1016/j.seta.2024.103972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Passive strategies involving greenery significantly increase energy performance in buildings and comfortable microclimate conditions. However, few studies model and simulate their effect on buildings’ energy performance. Thus, this work assesses modelling approaches for conducting building performance simulations where detached vertical green trellises (DVGT) are included. The DVGT characteristics are modelled by: (i) large solid component blocks and (ii) small opaque solid component blocks to form a grid. A building with glazed façades is evaluated through dynamic simulation under the tropical climate of Panama City, using DesignBuilder. Parametric analysis is performed to study the impact of the trellis configuration on the performance in reducing the annual cooling, lighting, and total electricity consumption. A cost-effective evaluation is also conducted based on the net present value for each trellis configuration. Results showed strong agreement with previous studies reporting significant cooling needs reduction while increasing lighting needs and promising return periods. This concludes that the correct optical and radiative properties of the vegetation layer that are wanted to be modelled in a detached vertical trellis are crucial.</p></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"71 \",\"pages\":\"Article 103972\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138824003680\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138824003680","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

涉及绿化的被动式策略可显著提高建筑物的能效和舒适的微气候条件。然而,很少有研究对其对建筑物能效的影响进行建模和模拟。因此,这项工作评估了进行建筑性能模拟的建模方法,其中包括分离式垂直绿化棚架(DVGT)。DVGT 特性的建模方法包括(i) 大型实心构件块和 (ii) 小型不透明实心构件块组成网格。在巴拿马城的热带气候条件下,使用 DesignBuilder 通过动态模拟对一栋带玻璃外墙的建筑进行了评估。通过参数分析,研究了棚架配置对降低年制冷、照明和总耗电量性能的影响。还根据每种花架配置的净现值进行了成本效益评估。结果显示,与之前的研究报告非常一致,即在显著减少制冷需求的同时,增加了照明需求,并有望获得回报期。由此得出结论,在分离式垂直花架中模拟植被层的正确光学和辐射特性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building performance modelling approaches for a detached vertical green trellis: A case study in a tropical climate

Passive strategies involving greenery significantly increase energy performance in buildings and comfortable microclimate conditions. However, few studies model and simulate their effect on buildings’ energy performance. Thus, this work assesses modelling approaches for conducting building performance simulations where detached vertical green trellises (DVGT) are included. The DVGT characteristics are modelled by: (i) large solid component blocks and (ii) small opaque solid component blocks to form a grid. A building with glazed façades is evaluated through dynamic simulation under the tropical climate of Panama City, using DesignBuilder. Parametric analysis is performed to study the impact of the trellis configuration on the performance in reducing the annual cooling, lighting, and total electricity consumption. A cost-effective evaluation is also conducted based on the net present value for each trellis configuration. Results showed strong agreement with previous studies reporting significant cooling needs reduction while increasing lighting needs and promising return periods. This concludes that the correct optical and radiative properties of the vegetation layer that are wanted to be modelled in a detached vertical trellis are crucial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Technologies and Assessments
Sustainable Energy Technologies and Assessments Energy-Renewable Energy, Sustainability and the Environment
CiteScore
12.70
自引率
12.50%
发文量
1091
期刊介绍: Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.
期刊最新文献
Designing an integrative strategy to introduce electric vehicles in the tourism sector in an outermost region of the European Union Advances in smart cities with system integration and energy digitalization technologies: A state-of-the-art review Building-integrated passive and renewable solar technologies: A review from 3E perspectives Ceramic Air-to-Air Recuperator for energy recovery in HVAC systems: CFD analysis and comparison with experimental tests Day-ahead energy management in green microgrids: Impact of long-term scheduling of hydrogen storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1